
The latex-lab-graphic package
Tagging of included graphics

LATEX Project∗

v0.80i 2026-01-16

Abstract

The following code implements a first draft for the tagging of graphics included with
\includegraphics and the picture environment.

1 Introduction
Tagging of pictures is non trivial.

1. Pictures generally can have various purposes and so different tagging modes must
be provided:

• The pictures can be purely ornamental and decorative, e.g., (always/usually)
some page border. This should normally be tagged as artifact, either in a
artifact MC-chunk or as an Artifact structure1.

• The pictures can be illustrative figures. This should normally be tagged as a
Figure structure with alternative text.

• The pictures can represent a symbol. This should be tagged as a Span structure
element with an /ActualText mapping to some Unicode Codepoint(s) (or
perhaps even directly in the stream with a Span BDC with an /ActualText).

• The pictures can also be intended for consumption as normal text For example
the todonotes package uses a tikZ picture to surround the text in a node
with some colored frame and background. In this case the text (which can
contain more elements like lists) should be tagged as usual and put in an Aside
structure while the decorative elements should be marked up as artifacts.

• There are also case where no tagging is wanted, e.g. because the tagging is
done by surrounding commands, in this case the begin/end sockets should be
transparent and do nothing.

• And naturally there can be more complicated scenarios with mixtures of these
elements, e.g., some text in nodes in a tikZ picture can be meaningful while
other nodes still should be tagged as artifact.

∗Initial implementation done by Ulrike Fischer
1The second option exists only in PDF 2.0

1

2. The various packages that allow to draw pictures uses lots of boxes and moves
them around and that makes is not easy to get the tagging right – especially with
pdflatex where one has to insert the literals at the right time.

3. When the picture is tagged as Figure, the PDF-UA standards require an attribute
with a BBox key in the structure. That BBox describes the placement of the picture
on the page, and this typically require some low-level hacking into the picture code
to calculate the values.

The code here handles directly only the tagging of pictures included with \includegraphics
and the picture environment. But the used method and the documentation tries to stay
as general as possible, to make it easy to adapt the code to pictures drawn with other
packages like l3draw, tikz, pstricks, luamplibs or similar packages.

2 General implementation needs and ideas
2.1 User interfaces
The tagging of pictures can not be done fully automatically: user have to add alternative
text or mark up a picture as an artifact. It is important that the relevant user interfaces
are similar across all picture/graphic packages to make it easy for authors to adapt their
documents.

We therefore recommend package authors to implement an interface a key-value
interface like the following.

2.1.1 Tagging mode of individual graphics

To change the tagging mode of an individual graphic, the keys artifact (decorations),
alt (illustrative), and actualtext (symbol) should be used. The keys alt (and also
actualtext) take a text as argument.

\includegraphics[artifact]{example-image}
\begin{tikzpicture}[artifact] ... \end{tikzpicture}
\tikz[artifact]{...}
\begin{picture}[artifact]...\end{picture}

\includegraphics[alt=example image]{example-image}
\begin{tikzpicture}[alt=\myalttext] ... \end{tikzpicture}
\tikz[alt=example image]{...}
\begin{picture}[alt=example image]...\end{picture}

\includegraphics[actualtext=A]{example-image-A}
\begin{tikzpicture}[actualtext=A] ... \end{tikzpicture}
\tikz[actualtext=A]{...}
\begin{picture}[actualtext=A]...\end{picture}

Additionally, a key tagging-setup can be provided that allows to handle more
complicated cases, e.g.,

2

\includegraphics[tagging-setup={false}]{example-image} %no tagging at all
\begin{tikzpicture}[tagging-setup={artifact}] ... \end{tikzpicture}
\begin{tikzpicture}[tagging-setup={text}] ... \end{tikzpicture}
\begin{tikzpicture}[tagging-setup={alt=Water (H20),tag=Formula}] ... \end{tikzpicture}

This key is fully implemented for \includegraphics and picture but only partially
in the tikZ module.

2.1.2 Setting the tagging mode for a scope

Packages can also provide interfaces to change the tagging mode for all pictures or nodes
in a scope.

If this is done side-effects on the tagging of other picture types must be consid­
ered: If the generic sockets declared below are used (which are then used also by
\includegraphics, picture and perhaps more environments) a change of the tagging
mode can affect all pictures types using these sockets in the same scope.

This means that packages that want to offer “ scope support” but restrict it to their
own picture type should either use their own sockets modelled after the generic sockets,
or use some specific variable to control the change of the tagging mode.

With tikZ “ scope support” could be implemented rather easily as it has a setup com­
mand anyway. So with the implementation in latex-lab-tikz, all these work as expected

\tikzset{artifact}
\tikzset{alt=a text}
\tikzset{actualtext=A}
\tikzset{tagging-setup=text}

With \includegraphics the standard \setkeys can be used:

\setkeys{Gin}{alt=a text}
\setkeys{Gin}{artifact}
\setkeys{Gin}{actualtext=A}

This will then also affect picture environments in the scope.

2.2 Default tagging mode
If none of the keys are used, the picture code must chose a default tagging mode. The best
one depends on the graphic type and should be chosen as needed and then documented.

With \includegraphics we use as default the illustrative mode, tag it as Figure
structure, use the file name as alternative text and issue a warning that a real alternative
text is missing.

With the picture enviroment we use as default the illustrative mode to, but use a
fix text as alternative text and issue a warning too.

With tikZ (a first implementation is currently in latex-lab-tikz), the default is the
text mode, which means that a screen reader will read the text in the nodes in the order
they appear in the code. With this default, e.g. \todo’s from the todonotes are correctly
tagged.

In this implementation the artifact key can also be applied on nodes and will
remove them from the tagging.

3

\begin{tikzpicture}
\node[draw=red](x){Important!};
\node[artifact,fill=blue,anchor=west] at (x.east){};
\end{tikzpicture}

2.3 Sockets, plugs and commands
sockets The example implementations make use of up-to five tagging sockets. The sock­

ets are all used by the various graphic codes inside a group:

• An initialization (init) socket that handles the key-val argument and setups
the tagging mode by switching the plugs of the other tagging sockets.

• Two sockets that are used at the begin and end of the picture and setup the
main structure element. The end socket typically also executes if needed the
code to calculate the BBox attribute and add it to the structure. After the
begin socket tagging is suspended, and before the end socket resumed.

• Two sockets for the text mode that are used around places where a picture
contains text. Tagging must be resumed before this sockets if they should do
anything at all.

The sockets take arguments that allows some configuration (e.g. to use a special
command for the BBox calculation) and the plugs are coded so that they can be used
in more than one picture type (they are shared here between \includegraphics
and picture) but there is no obligation to use them in every graphic code. A
package can declare its own sockets and plugs. See 2.1.2 for some discussion why
this can be a good idea.

plugs The main begin and end sockets should normally have four plugs for the
different modes: alt, actualtext, artifact and text. To disable tagging,
\SuspendTagging can be used, alternatively for sockets with zero or one argument,
the predefined noop plug can be assigned, and for sockets with two arguments (if
the socket has been declared with \NewTaggingSocket the transparent socket
which lets pass through the second argument.
The initialization socket and the texts sockets typically have only one additional
plug that is used when tagging is active.

commands A command to store the position of a reference point on the page and a
command to calculate the BBox from this reference point and the size of the picture
are needed. The second command must also add the attribute to the main structure
element (how to do this can be seen in the implementation). These commands are
typically specific for a picture type.

We now describe how this general principles have be implemented in the concrete
examples of the \includegraphics command, the picture environment, TODO! and a
simple environment for l3draw commands.

3 Sockets, plugs, commands
The code defines the following generic sockets and commands.

4

• graphic/init with the plug default

• graphic/begin (one argument) with the plugs alt, actualtext, artifact, text,
off. The argument allows to set a default alternative text.

• graphic/end (two arguments) with the plugs alt, actualtext, artifact, text,
off. The first argument of the socket typically receives the command to calculate
the BBox. This command often contains a savepos command and so has to go
before the graphic box. The second argument allows to insert the box between this
command and the tagging commands.

• graphic/text/begin no argument, with the plug default

• graphic/text/end no argument with the plug default

This variable holds the current active graphic mode. It is e.g. used to test if text should
resume tagging.

\l_tag_graphic_mode_tl

4 Make \includegraphics tagging aware
Tagging of graphics included with \includegraphics is at a first glance easier to handle
than, e.g., a tikZ graphic, as there is only a simple box with a picture and no text
content to consider. One would think that adding some structure commands around a
box shouldn’t pose much problems.

But things are actually not so easy.
At first such graphics are inserted into the PDF as XObjects and there are two ways

to add an such an XObject to a structure: similar to text as a marked content item (by
surrounding it with \tagmcbegin and \tagmcend) or by referencing the XObject with
an OBJR object (similar to a link annotation). Which method is more sensible (and if
it actually matters) is unknown. Currently the first method is used as the second would
changes in the backend files.

At second—and this is actually a much bigger problem2—if the graphic is tagged
as an illustrative picture the Figure structure element should have an attribute with an
BBox entry. The value of this BBox is an array of four numbers that gives the coordinates
of the left, bottom, right, and top edges of the structure element’s bounding box on the
page. That is the rectangle that completely encloses its visible content and so has not
necessarily the same size as the TeX bounding box: if viewport or trim is used and the
graphic is not clipped, the visible content can be larger. It turned out to be extremely
tricky to get a sensible result, and there are still open problems and restrictions.

4.1 The BBox calculation
The reference point on the page is retrieved with \tex_savepos:D and a property just
before the graphic.

Getting from this the BBox can be quite straightforward for a graphic that is used
once as is. But graphics can be trimmed, scaled, reflected, rotated and reused in various
ways. These transformations typically involve a mix of TEX commands that shift a

2Which shows also in the amount of code dedicated here only to this problem.

5

box or change the bounding box and backend commands that insert a pdfliteral with a
transformation matrix. Calculating the correct BBox in all cases is not possible without
rewriting large parts of the graphics and graphicx packages. Problematic are

• manipulations through external box commands (\rotatebox, \reflectbox, \scalebox).
Their implementation do not pass the transformation matrix in a way that allows
to track the changes for the BBox of an included graphic: sometimes the values are
set to late (after the box is already stored), and often the values are not grouped
and can leak out from earlier uses of the commands.

• some combination of keys in the optional argument of \includegraphics. Ex­
amples are origin and multiple calls to scale and angle) as they internally call
the box commands. Examples of failing combinations can be found in the test file
graphic-faults.

• graphics that are stored in a box and reused: to get the BBox one has to set a
label that stores the position with \pdfsavepos, and if a box is reused one gets
multiply defined labels. One possible solution here is to make use of the new delayed
\pdfliteral. It allows to change the label names in the shipout, but this requires
careful tracking the box usages and so various kernel changes.

Therefore a correct BBox is currently implemented only for simple \includegraphics
and the keys viewport, trim, scale and angle (used at most once).

Currently not supported are

• graphics inside \rotatebox, \reflectbox, \scalebox.
TODO: A new implementation with l3graphics and l3box is probably needed
here.

• multiple uses of the scale and angle keys

• multiple use of graphics stored in boxes. For such graphics automated tagging
should be probably deactivated when storing the content and tagging should be
added around the \usebox. (How to proceed when content is saved in boxes needs
generally more testing).

4.2 User interface
As suggested above the code (re)defines keys for \includegraphics to add the recom­
mended interfaces alt, artifact and actualtext. It also offers some keys specific to
\includegraphics:

alt This key is already defined in the graphicx package but redefined here to switch to
the illustrative mode and to add its value as alternative text.

actualtext This switches to the actualtext mode. This is useful for small graphics
that represent single chars or a short word like a logo. If actualtext is used, the
graphics is not enclosed in Figure structure but in a Span structure and no /BBox
attribute is added. 3

artifact This tags the graphic as an artifact.
3This in accordance with (the draft of) PDF/UA-2 but violates perhaps PDF/UA-1.

6

tagging-setup This key takes as argument a key-list, which can contain the following
keys:

alt=⟨text⟩ This a second way to tag the graphic as figure with alternative text.
alt without value will tag as figure but not change the text variable, alt= will
empty the text variable (and typically trigger a warning).

actualtext=⟨text⟩ This a second way to tag the graphic as a symbol with actu­
altext.

artifact This a second way to tag the graphic as artifact.
text This switches to text mode.
off When used tagging will be stopped completely. It is then the responsibility of

the surrounding code to add appropriate tagging commands.
tag=⟨name⟩ This switches to the illustrative mode but uses ⟨name⟩ as tag name in

the structure instead of the default Figure. This can for example be used to
tag an image of a formula with Formula.

adjust-BBox If the calculated /BBox values are wrong they can be corrected with this
key. It expects four dimensions that are added to the /BBox values.

The code also add to the debug key of \DocumentMetadata the value BBox. This
adds a half transparent red layer showing the calculated BBox.

 \DocumentMetadata{tagging=on,debug=BBox}

4.3 Hooks
The three key definitions alt, actualtext and artifact used by \includegraphics
contain hooks, named Gin/alt, Gin/actualtext, and Gin/artifact, respectively. The
first two take two arguments: the (with \text_purify:n) purified value of the key that
is also used in the PDF and the raw value of the key. The hooks are processed even if
tagging is not activated. With them, it is for example possible to store the alternative
text:

 \AddToHookWithArguments{Gin/alt}{\gdef\myalttext{#2}}
 \includegraphics[alt=Hello World]{example-image-A}
 The alt text of the graphic was \myalttext.

Please note

• The hooks are also executed if the keys are set with \setkeys{Gin}.

• The arguments are given to the hooks without any processing or purifying.

• The hooks are not executed in the picture environment or in tikz pictures as they
use different keys.

• The hooks are obviously not executed if the keys are not used. That means
they can’t be used directly to issue a warning or an error that an alt text
is missing. For this some additional logic is needed, e.g., a counter in the
cmd/includegraphics/before hook, that allows to identify the graphics and to
store the alt or actual text individually.

7

5 Make picture tagging aware
5.1 User interface
The original picture environment doesn’t have a optional argument with key-value value
processing. So the code changes that and then provides the keys already discussed for
\includegraphics.

5.2 BBox calculation
The BBox calculation is much simpler than for \includegraphics as the code simply
takes the declared size from the picture arguments.

5.3 Tagging in text mode
A picture can contain \put commands with text content, tagging this in text mode
could make sense in some cases. But it is not quite clear if one can/should redefine the
\put command. If text tagging is wanted we suggest to define a dedicated command
along these lines:

 \NewDocumentCommand\picturenode{O{}r()m}
 {
 \group_begin:
 \keys_set:nn{tag/graphic}{#1}
 \str_if_eq:VnT\l_tag_graphic_mode_tl {text}
 {\tag_resume:n{\picturenode}}

 \tag_socket_use:n{graphic/text/begin}
 \put(#2){#3}
 \tag_socket_use:n{graphic/text/end}
 \group_end:
 }

6 Make an l3draw environment tagging aware
The newest l3draw version (in the latex3 github) has all needed data to define a command
to retrieve the BBox and to build a tagging aware environment. l3draw currently has no
dedicated function to add text, instead one has to store the text in a box and then reuse
it, so similar to the picture environment a dedicated command with tagging awareness
is suggested.

A command to calculate the BBox can for example be defined like this

 \cs_new:Npn\draw_tag_bbox_attribute:
 {
 \tl_set:Ne \g__tag_graphic_lx_tl
 {
 \dim_to_decimal_in_bp:n
 {
 \property_ref:een {draw.\int_use:N\g_draw_id_int}{xpos}{0}sp
 +
 \g_draw_bb_xmin_dim

8

 }
 }

 \tl_set:Ne \g__tag_graphic_ly_tl
 {
 \dim_to_decimal_in_bp:n
 {
 \property_ref:een {draw.\int_use:N\g_draw_id_int}{ypos}{0}sp
 +
 \g_draw_bb_ymin_dim

 }
 }

 \tl_set:Ne \g__tag_graphic_ux_tl
 {
 \dim_to_decimal_in_bp:n
 {
 \property_ref:een {draw.\int_use:N\g_draw_id_int}{xpos}{0}sp
 +
 \g_draw_bb_xmax_dim

 }
 }

 \tl_set:Ne \g__tag_graphic_uy_tl
 {
 \dim_to_decimal_in_bp:n
 {
 \property_ref:een {draw.\int_use:N\g_draw_id_int}{ypos}{0}sp
 +
 \g_draw_bb_ymax_dim

 }
 }

 \bool_if:NT\l__tag_graphic_debug_bool
 {
 __tag_graphic_show_bbox:VVVVne
 \g__tag_graphic_lx_tl
 \g__tag_graphic_ly_tl
 \g__tag_graphic_ux_tl
 \g__tag_graphic_uy_tl
 {red}
 {draw.\int_use:N\g_draw_id_int}

 }
 \tag_struct_gput:ene

 {\tag_get:n{struct_num}}
 {attribute}
 {
 /O /Layout /BBox~
 [
 \dim_to_decimal_in_bp:n
 {
 \property_ref:een {draw.\int_use:N\g_draw_id_int}{xpos}{0}sp
 +

 \g_draw_bb_xmin_dim

9

 }
 \c_space_tl
 \dim_to_decimal_in_bp:n
 {
 \property_ref:een {draw.\int_use:N\g_draw_id_int}{ypos}{0}sp
 +
 \g_draw_bb_ymin_dim

 }
 \c_space_tl
 \dim_to_decimal_in_bp:n
 {
 \property_ref:een {draw.\int_use:N\g_draw_id_int}{xpos}{0}sp
 +
 \g_draw_bb_xmax_dim

 }
 \c_space_tl
 \dim_to_decimal_in_bp:n
 {
 \property_ref:een {draw.\int_use:N\g_draw_id_int}{ypos}{0}sp
 +
 \g_draw_bb_ymax_dim

 }
]

 }
 }

A tagging aware environment can then be defined like this

\NewDocumentEnvironment{tagged-draw}{O{}}
 {\leavevmode
 \tag_socket_use:nn{graphic/init}{#1}
 \tag_socket_use:nn{graphic/begin}{tagged-draw~environment}
 \tag_suspend:n{\draw} %
 \draw_begin:\ignorespaces

 }
 {
 \draw_end:
 \tag_resume:n{\draw}
 \tag_socket_use:nnn{graphic/end}{\draw_tag_bbox_attribute:}{}

 }

And a command for tagged text nodes could look like this

\cs_new_protected:Npn \draw_text_node:nnn #1#2#3 %#1 keyval, #2 point, #3 text
 {
 \group_begin:
 \keys_set:nn{tag/graphic}{#1}
 \str_if_eq:VnT\l_tag_graphic_mode_tl {text}

 {\tag_resume:n{\draw_node:nn}}
 \tag_socket_use:n{graphic/text/begin}
 \hbox_set:Nn \l_tmpa_box{#3}

10

 \draw_box_use:Nn\l_tmpa_box {#2}
 \tag_socket_use:n{graphic/text/end}
 \group_end:

 }

 1 ⟨@@=tag⟩
 2 ⟨∗package⟩

7 Implementation
 3 \ProvidesExplPackage {latex-lab-testphase-graphic} {\ltlabgraphicdate} {\ltlabgraphicversion}
 4 {Code related to the tagging of graphics}

a variant
 5 \cs_generate_variant:Nn \tag_socket_use:nn {ne}

We load l3opacity for the debug code if opacity is not already defined in the kernel:
 6 \cs_if_exist:NF \opacity_select:n
 7 {
 8 \RequirePackage{l3opacity}
 9 }

__tag_graphic_savepos:n this is the command which stores the position. Similar to zref-savepos it uses two savepos
commands for the case that bidi changes the processing order.
 10 \cs_new_protected:Npn__tag_graphic_savepos:n #1
 11 {
 12 \tex_savepos:D
 13 \property_record:nn{#1}{xpos,ypos,abspage}
 14 \tex_savepos:D
 15 }
 16 \cs_generate_variant:Nn __tag_graphic_savepos:n {e}
(End of definition for __tag_graphic_savepos:n.)

7.1 Variables
\l__tag_graphic_alt_tl

\l__tag_graphic_actual_tl
\l__tag_graphic_struct_tl

\l_tag_graphic_mode_tl

These variables are related to the tagging. Variables for the alt text, the actualtext and
the structure tag. The variable that holds the tagging mode is public, so that commands
can test for it, and e.g. restart tagging in text mode.
 17 \tl_new:N \l__tag_graphic_alt_tl
 18 \tl_new:N \l__tag_graphic_actual_tl
 19 \tl_new:N \l__tag_graphic_struct_tl
 20 \tl_set:Nn\l__tag_graphic_struct_tl {Figure}

(End of definition for \l__tag_graphic_alt_tl and others. This variable is documented on page 5.)

\l__tag_graphic_debug_bool A boolean for debug code
 21 \bool_new:N \l__tag_graphic_debug_bool
(End of definition for \l__tag_graphic_debug_bool.)

The rest of the variables are related to the BBox calculation in \includegraphics.

\g__tag_graphic_int This is used to get unique labels in the savepos code.
 22 \int_new:N\g__tag_graphic_int

11

(End of definition for \g__tag_graphic_int.)

\g__tag_graphic_lx_tl
\g__tag_graphic_ly_tl
\g__tag_graphic_ux_tl
\g__tag_graphic_uy_tl

\l__tag_graphic_bboxcorr_seq \l__tag_graphic_bboxcorr_bool

This commands will hold the calculated BBox values. Local variables would probably
work too, but global variables can be easier retrieved in tests and debugging code ...
 23 \tl_new:N \g__tag_graphic_lx_tl
 24 \tl_new:N \g__tag_graphic_ly_tl
 25 \tl_new:N \g__tag_graphic_ux_tl
 26 \tl_new:N \g__tag_graphic_uy_tl
 27 \seq_new:N\l__tag_graphic_bboxcorr_seq
 28 \bool_new:N\l__tag_graphic_bboxcorr_bool
(End of definition for \g__tag_graphic_lx_tl and others.)

\l__tag_graphic_currentlabel_tl This holds the label name of the savepos.
 29 \tl_new:N \l__tag_graphic_currentlabel_tl
(End of definition for \l__tag_graphic_currentlabel_tl.)

\l__tag_graphic_sin_fp
\l__tag_graphic_cos_fp

\l__tag_graphic_scale_fp
\l__tag_graphic_lxly_fp
\l__tag_graphic_lxuy_fp
\l__tag_graphic_uxly_fp
\l__tag_graphic_uxuy_fp
\l__tag_graphic_ux_fp
\l__tag_graphic_ly_fp
\l__tag_graphic_lx_fp
\l__tag_graphic_uy_fp

\l__tag_graphic_trim_ux_fp
\l__tag_graphic_trim_ly_fp
\l__tag_graphic_trim_lx_fp
\l__tag_graphic_trim_uy_fp

A bunch of fp-variables (we don’t use tl-vars, to avoid to have to take care about minus
signs everywhere)
 30 \fp_new:N\l__tag_graphic_sin_fp
 31 \fp_new:N\l__tag_graphic_cos_fp
 32 \fp_new:N\l__tag_graphic_lxly_fp
 33 \fp_new:N\l__tag_graphic_lxuy_fp
 34 \fp_new:N\l__tag_graphic_uxly_fp
 35 \fp_new:N\l__tag_graphic_uxuy_fp
 36 \fp_new:N\l__tag_graphic_ux_fp
 37 \fp_new:N\l__tag_graphic_ly_fp
 38 \fp_new:N\l__tag_graphic_lx_fp
 39 \fp_new:N\l__tag_graphic_uy_fp

this holds the scale value. Either \Gin@scalex or (if that is !) \Gin@scaley
 40 \fp_new:N\l__tag_graphic_scale_fp

the follow variables hold the four trim values (or the equivalent calculated values if
viewport is used.
 41 \fp_new:N\l__tag_graphic_trim_ux_fp
 42 \fp_new:N\l__tag_graphic_trim_ly_fp
 43 \fp_new:N\l__tag_graphic_trim_lx_fp
 44 \fp_new:N\l__tag_graphic_trim_uy_fp
(End of definition for \l__tag_graphic_sin_fp and others.)

7.2 Tagging sockets
The sockets can perhaps not be shared between \includegraphics and picture but for
now we try to do it, with the exception of the init socket.

The begin socket takes an argument to allow to pass some configuration. The end
socket takes two argument to allow to calculate the BBox before outputting the box.

tagsupport/graphic/init (socket)
tagsupport/graphic/begin (socket)
tagsupport/graphic/end (socket)

tagsupport/graphic/text/begin (socket)
tagsupport/graphic/graphic/text/end (socket)

 45 \NewTaggingSocket{graphic/init}{1}
 46 \NewTaggingSocket{graphic/begin}{1}
 47 \NewTaggingSocket{graphic/end}{2}
 48 \NewTaggingSocket{graphic/text/begin}{0}
 49 \NewTaggingSocket{graphic/text/end}{0}

12

7.3 Tagging plugs
7.3.1 Initialization of the tagging mode

default (tagsupport/graphic/init) (plug)
default (tagsupport/graphic/init) (plug) 50 \NewTaggingSocketPlug{graphic/init}{default}

 51 {
 52 \keys_set:nn{tag/graphic}{#1}
 53 \ExpandArgs{no}\AssignTaggingSocketPlug{graphic/begin}{\l_tag_graphic_mode_tl}
 54 \ExpandArgs{no}\AssignTaggingSocketPlug{graphic/end}{\l_tag_graphic_mode_tl}
 55 }
 56 \AssignTaggingSocketPlug{graphic/init}{default}

7.3.2 Main begin and end sockets

figure (tagsupport/graphic/begin) (plug)
figure (tagsupport/graphic/end) (plug)

 These plugs handle the graphic as a figure. Around the graphic is a Figure environment
which will use an alt text given in the optional argument and internally tagging is sus­
pended. The Bbox will be set (after the second compilation) to the size of the declared
size
 57 \msg_new:nnn { tag } { alt-text-missing }
 58 {
 59 Alternative~text~for~graphic~is~missing.\\
 60 Using~'#1'~instead.
 61 }
 62 \NewTaggingSocketPlug{graphic/begin}{alt}
 63 {
 64 \tag_mc_end_push:
 65 \tl_if_empty:NT\l__tag_graphic_alt_tl
 66 {
 67 \msg_warning:nne{tag}{alt-text-missing}{#1}
 68 \tl_set:Ne\l__tag_graphic_alt_tl {\text_purify:n{#1}}
 69 }
 70 \tag_struct_begin:n
 71 {
 72 tag=\l__tag_graphic_struct_tl,
 73 alt=\l__tag_graphic_alt_tl,
 74 }
 75 \tag_mc_begin:n{}
 76 }
 77 \NewTaggingSocketPlug{graphic/end}{alt}
 78 {
 79 #1
 80 #2
 81 \tag_mc_end:
 82 \tag_struct_end:
 83 \tag_mc_begin_pop:n{}
 84 }

actualtext (tagsupport/graphic/begin) (plug)
actualtext (tagsupport/graphic/end) (plug)

 This plug handles the picture as a symbol with an actualtext. It tags the content as a
Span and expects an actualtext. Internally tagging is suspended.
 85 \NewTaggingSocketPlug{graphic/begin}{actualtext}
 86 {
 87 \tag_mc_end_push:
 88 \tag_struct_begin:n{tag=Span,actualtext=\l__tag_graphic_actual_tl }

13

 89 \tag_mc_begin:n{}
 90 }
 91 \NewTaggingSocketPlug{graphic/end}{actualtext}
 92 {
 93 #2
 94 \tag_mc_end:
 95 \tag_struct_end:
 96 \tag_mc_begin_pop:n{}
 97 }

artifact (tagsupport/graphic/begin) (plug)
artifact (tagsupport/graphic/end) (plug)

 This plug handles the picture as an artifact, as decoration. So it is surrounded by an
artifact MC and internal text does not restart tagging.
 98 \NewTaggingSocketPlug{graphic/begin}{artifact}
 99 {
100 \tag_mc_end_push:
101 \tag_mc_begin:n{artifact}
102 }
103 \NewTaggingSocketPlug{graphic/end}{artifact}
104 {
105 #2
106 \tag_mc_end:
107 \tag_mc_begin_pop:n{}
108 }

text (tagsupport/graphic/begin) (plug)
text (tagsupport/graphic/end) (plug)

 This plug can be used for text tagging. It basically does the same as the artifact plug.
The main reason that it exist is that it looks more consistend and that we can test for
the plug name and so restart tagging in places where this is wanted. (tagging can not be
resumed inside a tagging hook, so has to use some external method).
109 \NewTaggingSocketPlug{graphic/begin}{text}
110 {
111 \tag_mc_end_push:
112 \tag_mc_begin:n{artifact}
113 }
114 \NewTaggingSocketPlug{graphic/end}{text}
115 {
116 #2
117 \tag_mc_end:
118 \tag_mc_begin_pop:n{}
119 }

off (tagsupport/graphic/begin) (plug)
off (tagsupport/graphic/end) (plug)

 This plug can be used for text tagging. It basically does the same as the artifact plug.
The main reason that it exist is that it looks more consistend and that we can test for
the plug name and so restart tagging in places where this is wanted. (tagging can not be
resumed inside a tagging hook, so has to use some external method).
120 \NewTaggingSocketPlug{graphic/begin}{off}{}
121 \NewTaggingSocketPlug{graphic/end}{off}{#2}

By default we use the alt plugs
122 \AssignTaggingSocketPlug{graphic/begin}{alt}
123 \AssignTaggingSocketPlug{graphic/end}{alt}

14

default (tagsupport/graphic/text/begin) (plug)
default (tagsupport/picture/text/end) (plug)

 These sockets are used inside the text plugs and ends the previous mc and restarts it
after the text. Not used by \includegraphics. Unclear if they can be used by the
picture environment.
124 \NewTaggingSocketPlug{graphic/text/begin}{default}
125 {
126 \tag_mc_end:
127 \tag_mc_begin:n{}
128 }
129 \NewTaggingSocketPlug{graphic/text/end}{default}
130 {
131 \tag_mc_end:
132 \tag_mc_begin:n{artifact}
133 }
134 \AssignTaggingSocketPlug{graphic/text/begin}{default}
135 \AssignTaggingSocketPlug{graphic/text/end}{default}

7.4 Generic keys
The keys are used by picture and \includegraphics (through the tagging-setup key
136 \keys_define:nn{tag/graphic}
137 {
138 ,mode .code:n =
139 {
140 \tl_set:Ne\l_tag_graphic_mode_tl{#1}
141 }
142 ,alt .code:n =
143 {
144 \tl_set:Ne\l__tag_graphic_alt_tl{\text_purify:n{#1}}
145 \tl_set:Nn\l_tag_graphic_mode_tl{alt}
146 }
147 ,artifact .code:n =
148 {
149 \tl_set:Nn\l_tag_graphic_mode_tl{artifact}
150 }
151 ,actualtext .code:n =
152 {
153 \tl_set:Ne\l__tag_graphic_actual_tl{\text_purify:n{#1}}
154 \tl_set:Nn\l_tag_graphic_mode_tl{actualtext}
155 }
156 ,text .code:n =
157 {
158 \tl_set:Nn\l_tag_graphic_mode_tl{text}
159 }
160 ,off .code:n =
161 {
162 \tl_set:Nn\l_tag_graphic_mode_tl{off}
163 }
164 ,adjust-BBox .code:n =
165 {
166 \bool_set_true:N \l__tag_graphic_bboxcorr_bool
167 \seq_set_split:Nnn\l__tag_graphic_bboxcorr_seq{~}{#1~0pt~0pt~0pt~0pt}
168 }
169 ,

15

170 tagging-setup .code:n=
171 {
172 \keys_set:nn { tag/graphic }{#1}
173 }

only for legacy. Should perhaps be removed?
174 ,tag .code:n =
175 {
176 \str_case:nnF {#1}
177 {
178 {artifact}
179 {
180 \tl_set:Nn\l_tag_graphic_mode_tl{artifact}
181 }
182 {false}{\tag_suspend:n{picture}}
183 }
184 {
185 \tl_set:Nn\l__tag_graphic_struct_tl{#1}
186 \tl_set:Nn\l_tag_graphic_mode_tl{alt}
187 }
188 }
189 }

7.5 Tagging support for \includegraphics

7.5.1 User interface: Additional keys.

We also ensure that graphicx is loaded for the keyval support. At first a command to
hold the tagging mode.
190 \tl_new:N \l_tag_graphic_mode_tl
191 \tl_set:Nn \l_tag_graphic_mode_tl {alt} %TODO think about the right default.

192 \hook_new_with_args:nn {Gin/alt} {2}
193 \hook_new:n {Gin/artifact}
194 \hook_new_with_args:nn {Gin/actualtext}{2}
195 \AddToHook{package/graphicx/after}[latex-lab]
196 {
197 \define@key{Gin}{alt}
198 {
199 \tl_set:Ne\l__tag_graphic_alt_tl{\text_purify:n{#1}}
200 \exp_args:Nnno\hook_use:nnw {Gin/alt}{2}{\l__tag_graphic_alt_tl}{#1}
201 \tl_set:Nn\l_tag_graphic_mode_tl {alt}
202 }
203 \define@key{Gin}{artifact}[]
204 {
205 \hook_use:n{Gin/artifact}
206 \tl_set:Nn\l_tag_graphic_mode_tl{artifact}
207 }
208 \define@key{Gin}{actualtext}
209 {
210 \tl_set:Ne\l__tag_graphic_actual_tl{\text_purify:n{#1}}
211 \exp_args:Nnno\hook_use:nnw {Gin/actualtext}{1}{\l__tag_graphic_actual_tl}{#1}
212 \tl_set:Nn\l_tag_graphic_mode_tl{actualtext}
213 }
214 \define@key{Gin}{tagging-setup}

16

215 {
216 \keys_set:nn { tag/graphic}{#1}
217 }
218 \define@key{Gin}{adjust-BBox}
219 {
220 \bool_set_true:N \l__tag_graphic_bboxcorr_bool
221 \seq_set_split:Nnn\l__tag_graphic_bboxcorr_seq{~}{#1~0pt~0pt~0pt~0pt}
222 }

only for legacy, no longer documented
223 \define@key{Gin}{tag}
224 {
225 \str_case:nnF {#1}
226 {
227 {artifact}
228 {
229 \tl_set:Nn\l_tag_graphic_mode_tl{artifact}
230 }
231 {false}{\tag_suspend:n{Gin}}
232 }
233 {
234 \tl_set:Nn\l__tag_graphic_struct_tl{#1}
235 \tl_set:Nn\l_tag_graphic_mode_tl{alt}
236 }
237 }
238 }
239 \AddToHook{package/graphics/after}[latex-lab]
240 {\RequirePackage{graphicx}}

7.5.2 Patching graphics commands

All changes are currently done in \Gin@setfile. We mainly have to add the sockets in
the right place and to rearrange a bit the \ifGin@draft test.
241 \AddToHook{package/graphics/after}
242 {
243 \def\Gin@setfile#1#2#3{%
244 \ifx\\#2\\\Gread@false\fi
245 \ifGin@bbox\else
246 \ifGread@
247 \csname Gread@%
248 \expandafter\ifx\csname Gread@#1\endcsname\relax
249 eps%
250 \else
251 #1%
252 \fi
253 \endcsname{\Gin@base#2}%
254 \else
255 \Gin@nosize{#3}%
256 \fi
257 \fi
258 \Gin@viewport@code
259 \Gin@nat@height\Gin@ury bp%
260 \advance\Gin@nat@height-\Gin@lly bp%
261 \Gin@nat@width\Gin@urx bp%

17

262 \advance\Gin@nat@width-\Gin@llx bp%
263 \Gin@req@sizes
264 \expandafter\ifx\csname Ginclude@#1\endcsname\relax
265 \Gin@drafttrue
266 \expandafter\ifx\csname Gread@#1\endcsname\relax
267 \@latex@error{Can not include graphics of type: #1}\@ehc
268 \global\expandafter\let\csname Gread@#1\endcsname\@empty
269 \fi
270 \fi
271 \leavevmode

Here the tagging begins. We want to catch also the draft box, and for luatex tagging
must be started before the \setbox.
272 \tag_socket_use:ne {graphic/init} {tagging-setup={mode=\l_tag_graphic_mode_tl}}
273 \tag_socket_use:nn {graphic/begin} {\Gin@base\Gin@ext}

We store also the draft box in a box and do not output it directly so that we can calculate
its BBox too.
274 \ifGin@draft
275 \setbox\z@
276 \hb@xt@\Gin@req@width{%
277 \vrule\hss
278 \vbox to \Gin@req@height{%
279 \hrule \@width \Gin@req@width
280 \vss
281 \edef\@tempa{#3}%
282 \rlap{ \ttfamily\expandafter\strip@prefix\meaning\@tempa}%
283 \vss
284 \hrule}%
285 \hss\vrule}%
286 \else
287 \@addtofilelist{#3}%
288 \ProvidesFile{#3}[Graphic~file~(type~#1)]%
289 \setbox\z@\hbox{\csname Ginclude@#1\endcsname{#3}}%
290 \dp\z@\z@
291 \ht\z@\Gin@req@height
292 \wd\z@\Gin@req@width
293 \fi

This ends the tagging.
294 \tag_socket_use:nnn{graphic/end}
295 { \Gin@tag@bbox@attribute }
296 { \box\z@ }
297 }
298 }

7.5.3 Calculating the BBox

This is the large code part.

__tag_graphic_get_trim: Graphics can be trimmed with the trim and the viewport key. If the graphic is not
clipped the values must be taken into account when rotating. If viewport is used we have
to calculate the trim.
299 \cs_new_protected:Npn __tag_graphic_get_trim:

18

300 {
301 \legacy_if:nTF {Gin@clip}

Setting to 0 is not strictly needed but looks cleaner.
302 {
303 \fp_zero:N\l__tag_graphic_trim_lx_fp
304 \fp_zero:N\l__tag_graphic_trim_ly_fp
305 \fp_zero:N\l__tag_graphic_trim_ux_fp
306 \fp_zero:N\l__tag_graphic_trim_uy_fp
307 }
308 {
309 \fp_set:Nn \l__tag_graphic_trim_lx_fp {\l__tag_graphic_scale_fp*\Gin@vllx}
310 \fp_set:Nn \l__tag_graphic_trim_ly_fp {\l__tag_graphic_scale_fp*\Gin@vlly}
311 \fp_set:Nn \l__tag_graphic_trim_ux_fp {\l__tag_graphic_scale_fp*\Gin@vurx}
312 \fp_set:Nn \l__tag_graphic_trim_uy_fp {\l__tag_graphic_scale_fp*\Gin@vury}
313 \cs_if_exist:NT \Gin@ollx
314 {
315 \fp_set:Nn \l__tag_graphic_trim_ux_fp {\l__tag_graphic_scale_fp* (\Gin@ourx-

(\Gin@urx)) }
316 \fp_set:Nn \l__tag_graphic_trim_uy_fp {\l__tag_graphic_scale_fp* (\Gin@oury-

(\Gin@ury)) }
317 }
318 }
319 }
(End of definition for __tag_graphic_get_trim:.)

__tag_graphic_get_scale:

320 \cs_new_protected:Npn __tag_graphic_get_scale:
321 {
322 \fp_set:Nn \l__tag_graphic_scale_fp
323 {
324 \str_if_eq:eeTF {\Gin@scalex} { ! }
325 { \Gin@scaley }
326 { \Gin@scalex }
327 }
328 }
(End of definition for __tag_graphic_get_scale:.)

__tag_graphic_applyangle:nnnn This takes the current BBox and rotates it according to the use angle. This is the most
laborious code, as we have to take also the trim values into account. We have to compare
the values after the rotation to find the right corners for the BBox. Not sure, if this is
the most effective code, the l3draw package has similar code to calculate a rotation, this
can perhaps be reused ...
329 \cs_new_protected:Npn __tag_graphic_applyangle:nnnn #1#2#3#4 %lx,ly,ux,uy
330 {
331 \bool_lazy_and:nnT
332 {\cs_if_exist_p:N \Grot@angle }
333 {! \int_compare_p:nNn { \Grot@angle }={0}}
334 {
335 \fp_set:Nn \l__tag_graphic_sin_fp { sind(\Grot@angle) }
336 \fp_set:Nn \l__tag_graphic_cos_fp { cosd(\Grot@angle) }
337 \fp_set:Nn \l__tag_graphic_lx_fp {#1}
338 \fp_set:Nn \l__tag_graphic_ly_fp {#2}

19

339 \fp_set:Nn \l__tag_graphic_ux_fp {#3}
340 \fp_set:Nn \l__tag_graphic_uy_fp {#4}

get the x coordinates (cos,-sin)
341 \fp_set:Nn\l__tag_graphic_lxly_fp
342 {
343 -\l__tag_graphic_trim_lx_fp * \l__tag_graphic_cos_fp
344 +\l__tag_graphic_trim_ly_fp * \l__tag_graphic_sin_fp
345 }
346 \fp_set:Nn\l__tag_graphic_lxuy_fp
347 {
348 (-\l__tag_graphic_trim_lx_fp) * \l__tag_graphic_cos_fp
349 +
350 (\l__tag_graphic_uy_fp-\l__tag_graphic_ly_fp-\l__tag_graphic_trim_ly_fp)
351 * (-\l__tag_graphic_sin_fp)
352 }
353 \fp_set:Nn\l__tag_graphic_uxly_fp
354 {
355 (\l__tag_graphic_ux_fp-\l__tag_graphic_lx_fp-\l__tag_graphic_trim_lx_fp)
356 * \l__tag_graphic_cos_fp
357 +
358 (\l__tag_graphic_trim_ly_fp) * (\l__tag_graphic_sin_fp)
359 }
360 \fp_set:Nn\l__tag_graphic_uxuy_fp
361 {
362 (\l__tag_graphic_ux_fp-\l__tag_graphic_lx_fp-\l__tag_graphic_trim_lx_fp)
363 * \l__tag_graphic_cos_fp
364 +
365 (\l__tag_graphic_uy_fp-\l__tag_graphic_ly_fp-\l__tag_graphic_trim_ly_fp)
366 * (-\l__tag_graphic_sin_fp)
367 }
368 \tl_gset:Ne\g__tag_graphic_lx_tl
369 {
370 \fp_eval:n
371 {
372 min
373 (
374 \l__tag_graphic_lxly_fp,
375 \l__tag_graphic_lxuy_fp,
376 \l__tag_graphic_uxly_fp,
377 \l__tag_graphic_uxuy_fp,
378)
379 +\l__tag_graphic_lx_fp
380 +\l__tag_graphic_trim_lx_fp
381 }
382 }
383 \tl_gset:Ne\g__tag_graphic_ux_tl
384 {
385 \fp_eval:n
386 {
387 max
388 (
389 \l__tag_graphic_lxly_fp,
390 \l__tag_graphic_lxuy_fp,
391 \l__tag_graphic_uxly_fp,

20

392 \l__tag_graphic_uxuy_fp
393)
394 +\l__tag_graphic_lx_fp
395 +\l__tag_graphic_trim_lx_fp
396 }
397 }

get the y coordinates (sin,cos)
398 \fp_set:Nn\l__tag_graphic_lxly_fp
399 {
400 -\l__tag_graphic_trim_lx_fp * \l__tag_graphic_sin_fp
401 -\l__tag_graphic_trim_ly_fp * \l__tag_graphic_cos_fp
402 }
403 \fp_set:Nn\l__tag_graphic_lxuy_fp
404 {
405 - \l__tag_graphic_trim_lx_fp * \l__tag_graphic_sin_fp
406 +
407 (\l__tag_graphic_uy_fp-\l__tag_graphic_ly_fp-\l__tag_graphic_trim_ly_fp)
408 * \l__tag_graphic_cos_fp
409 }
410 \fp_set:Nn\l__tag_graphic_uxly_fp
411 {
412 (\l__tag_graphic_ux_fp-\l__tag_graphic_lx_fp-\l__tag_graphic_trim_lx_fp)
413 * \l__tag_graphic_sin_fp
414 - \l__tag_graphic_trim_ly_fp * \l__tag_graphic_cos_fp
415 }
416 \fp_set:Nn\l__tag_graphic_uxuy_fp
417 {
418 (\l__tag_graphic_ux_fp-\l__tag_graphic_lx_fp-\l__tag_graphic_trim_lx_fp)
419 * \l__tag_graphic_sin_fp
420 +
421 (\l__tag_graphic_uy_fp-\l__tag_graphic_ly_fp-\l__tag_graphic_trim_ly_fp)
422 * \l__tag_graphic_cos_fp
423 }
424 \tl_gset:Ne\g__tag_graphic_ly_tl
425 {
426 \fp_eval:n
427 {
428 min
429 (
430 \l__tag_graphic_lxly_fp,
431 \l__tag_graphic_lxuy_fp,
432 \l__tag_graphic_uxly_fp,
433 \l__tag_graphic_uxuy_fp
434)
435 + \l__tag_graphic_ly_fp + \l__tag_graphic_trim_ly_fp
436 }
437 }
438 \tl_gset:Ne\g__tag_graphic_uy_tl
439 {
440 \fp_eval:n
441 {
442 max
443 (
444 \l__tag_graphic_lxly_fp,

21

445 \l__tag_graphic_lxuy_fp,
446 \l__tag_graphic_uxly_fp,
447 \l__tag_graphic_uxuy_fp,
448)
449 + \l__tag_graphic_ly_fp + \l__tag_graphic_trim_ly_fp
450 }
451 }
452 }
453 }
454 \cs_generate_variant:Nn__tag_graphic_applyangle:nnnn {VVVV}
(End of definition for __tag_graphic_applyangle:nnnn.)

__tag_graphic_applycorr:NNNN This command is used to add at the end the correction values. Quite dump ...
455 \cs_new_protected:Npn __tag_graphic_applycorr:NNNN #1 #2 #3 #4
456 {
457 \bool_if:NT\l__tag_graphic_bboxcorr_bool
458 {
459 \tl_set:Ne #1
460 {
461 \fp_eval:n
462 {
463 #1
464 +
465 \dim_to_decimal_in_bp:n {\seq_item:Nn \l__tag_graphic_bboxcorr_seq {1} }
466 }
467 }
468 \tl_set:Ne #2
469 {
470 \fp_eval:n
471 {
472 #2
473 +
474 \dim_to_decimal_in_bp:n {\seq_item:Nn \l__tag_graphic_bboxcorr_seq {2} }
475 }
476 }
477 \tl_set:Ne #3
478 {
479 \fp_eval:n
480 {
481 #3
482 +
483 \dim_to_decimal_in_bp:n {\seq_item:Nn \l__tag_graphic_bboxcorr_seq {3} }
484 }
485 }
486 \tl_set:Ne #4
487 {
488 \fp_eval:n
489 {
490 #4
491 +
492 \dim_to_decimal_in_bp:n {\seq_item:Nn \l__tag_graphic_bboxcorr_seq {4} }
493 }
494 }
495 }

22

496 }
(End of definition for __tag_graphic_applycorr:NNNN.)

\Gin@tag@bbox@attribute This is the main command to calculate and set the Bbox attribute of the \includegraphics
command. It also sets the reference point on the page.
497 \cs_new_protected:Npn \Gin@tag@bbox@attribute
498 {
499 __tag_graphic_get_scale:
500 __tag_graphic_get_trim:
501 \int_gincr:N\g__tag_graphic_int
502 \tl_set:Ne\l__tag_graphic_currentlabel_tl {__tag_graphic.\int_use:N \g__tag_graphic_int}
503 __tag_graphic_savepos:e { \l__tag_graphic_currentlabel_tl }
504 \tl_gset:Ne\g__tag_graphic_lx_tl
505 {
506 \dim_to_decimal_in_bp:n
507 { \property_ref:een {\l__tag_graphic_currentlabel_tl}{xpos}{0}sp }
508 }
509 \tl_gset:Ne\g__tag_graphic_ly_tl
510 {
511 \dim_to_decimal_in_bp:n
512 { \property_ref:een {\l__tag_graphic_currentlabel_tl}{ypos}{0}sp }
513 }
514 \tl_gset:Ne\g__tag_graphic_ux_tl
515 {
516 \fp_eval:n
517 {
518 \g__tag_graphic_lx_tl
519 +
520 \dim_to_decimal_in_bp:n { \Gin@req@width }
521 }
522 }
523 \tl_gset:Ne\g__tag_graphic_uy_tl
524 {
525 \fp_eval:n
526 {
527 \g__tag_graphic_ly_tl
528 +
529 \dim_to_decimal_in_bp:n { \Gin@req@height }
530 }
531 }

If the graphics is not clipped we must add the trim values.
532 \legacy_if:nF {Gin@clip}
533 {
534 \tl_gset:Ne\g__tag_graphic_ux_tl
535 {
536 \fp_eval:n
537 {
538 \g__tag_graphic_ux_tl
539 +
540 \l__tag_graphic_trim_ux_fp
541 }
542 }
543 \tl_gset:Ne\g__tag_graphic_lx_tl

23

544 {
545 \fp_eval:n
546 {
547 \g__tag_graphic_lx_tl
548 -
549 \l__tag_graphic_trim_lx_fp
550 }
551 }
552 \tl_gset:Ne\g__tag_graphic_uy_tl
553 {
554 \fp_eval:n
555 {
556 \g__tag_graphic_uy_tl
557 +
558 \l__tag_graphic_trim_uy_fp
559 }
560 }
561 \tl_gset:Ne\g__tag_graphic_ly_tl
562 {
563 \fp_eval:n
564 {
565 \g__tag_graphic_ly_tl
566 -
567 \l__tag_graphic_trim_ly_fp
568 }
569 }
570 }

If there is an angle we now rotate the values.
571 __tag_graphic_applyangle:VVVV
572 \g__tag_graphic_lx_tl
573 \g__tag_graphic_ly_tl
574 \g__tag_graphic_ux_tl
575 \g__tag_graphic_uy_tl

At last we have to add the correction values
576 __tag_graphic_applycorr:NNNN
577 \g__tag_graphic_lx_tl
578 \g__tag_graphic_ly_tl
579 \g__tag_graphic_ux_tl
580 \g__tag_graphic_uy_tl

581 \bool_if:NT\l__tag_graphic_debug_bool
582 {
583 __tag_graphic_show_bbox:VVVVne
584 \g__tag_graphic_lx_tl
585 \g__tag_graphic_ly_tl
586 \g__tag_graphic_ux_tl
587 \g__tag_graphic_uy_tl
588 {red}
589 {\l__tag_graphic_currentlabel_tl}
590 }

Now we add the attribute. We do it manually as it had to be delayed until now. The
structure and the mc must be open earlier, before the \setbox (at least for luatex it has

24

to).
591 \tag_struct_gput:ene{\tag_get:n{struct_num}}{attribute}
592 {
593 /O /Layout /BBox~
594 [
595 \g__tag_graphic_lx_tl\c_space_tl
596 \g__tag_graphic_ly_tl\c_space_tl
597 \g__tag_graphic_ux_tl\c_space_tl
598 \g__tag_graphic_uy_tl
599]
600 }
601 }
(End of definition for \Gin@tag@bbox@attribute.)

7.6 Support for the picture environment
7.6.1 User interface

The original picture has no key-val argument yet. In the new optional argument uses the
generic tag/graphic keys. We could perhaps use the Gin keys instead, but there could be
side-effects if some uses other Gin keys like angle, so better stay on the safe side.

7.6.2 Calculation of the BBox

\picture@tag@bbox@attribute Picture needs a similar command to calculate the BBox. But here we stay simple and
use simply the size of the picbox.
602 \newcommand\picture@tag@bbox@attribute
603 {
604 \int_gincr:N\g__tag_graphic_int
605 \tl_set:Ne\l__tag_graphic_currentlabel_tl {__tag_graphic.\int_use:N \g__tag_graphic_int}
606 __tag_graphic_savepos:e { \l__tag_graphic_currentlabel_tl }
607 \tl_gset:Ne \g__tag_graphic_lx_tl
608 {
609 \dim_to_decimal_in_bp:n
610 { \property_ref:een {\l__tag_graphic_currentlabel_tl}{xpos}{0}sp }
611 }
612 \tl_gset:Ne \g__tag_graphic_ly_tl
613 {
614 \dim_to_decimal_in_bp:n
615 { \property_ref:een {\l__tag_graphic_currentlabel_tl}{ypos}{0}sp - \dp\@picbox }
616 }
617 \tl_gset:Ne \g__tag_graphic_ux_tl
618 {
619 \dim_to_decimal_in_bp:n
620 {
621 \g__tag_graphic_lx_tl bp + \wd\@picbox
622 }
623 }
624 \tl_gset:Ne \g__tag_graphic_uy_tl
625 {
626 \dim_to_decimal_in_bp:n
627 {
628 \g__tag_graphic_ly_tl bp + \ht\@picbox + \dp\@picbox

25

629 }
630 }
631 __tag_graphic_applycorr:NNNN
632 \g__tag_graphic_lx_tl
633 \g__tag_graphic_ly_tl
634 \g__tag_graphic_ux_tl
635 \g__tag_graphic_uy_tl
636 \bool_if:NT\l__tag_graphic_debug_bool
637 {
638 __tag_graphic_show_bbox:VVVVne
639 \g__tag_graphic_lx_tl
640 \g__tag_graphic_ly_tl
641 \g__tag_graphic_ux_tl
642 \g__tag_graphic_uy_tl
643 {red}
644 {\l__tag_graphic_currentlabel_tl}
645 }

this stores the attribute in the structure.
646 \tag_struct_gput:ene{\tag_get:n{struct_num}}{attribute}
647 {
648 /O /Layout /BBox~
649 [
650 \g__tag_graphic_lx_tl\c_space_tl
651 \g__tag_graphic_ly_tl\c_space_tl
652 \g__tag_graphic_ux_tl\c_space_tl
653 \g__tag_graphic_uy_tl
654]
655 }
656 }
(End of definition for \picture@tag@bbox@attribute.)

7.6.3 Patching the commands

We redefine \picture to accept an optional argument. We also ensure that we are in
hmode, so that stopping tagging doesn’t confuse the paratags.
657 \RenewDocumentCommand\picture{O{}m}
658 {
659 \leavevmode
660 \tag_socket_use:nn{graphic/init}{#1}
661 \pictur@#2
662 }

inside the picture box we stop tagging.
663 \def\@picture(#1,#2)(#3,#4){%
664 \@defaultunitsset\@picht{#2}\unitlength
665 \@defaultunitsset\@tempdimc{#1}\unitlength
666 \tag_socket_use:nn{graphic/begin}{picture~environment}
667 \tag_suspend:n{\@picture} %do not tag inside the picture box
668 \setbox\@picbox\hb@xt@\@tempdimc\bgroup
669 \@defaultunitsset\@tempdimc{#3}\unitlength
670 \hskip -\@tempdimc
671 \@defaultunitsset\@tempdimc{#4}\unitlength
672 \lower\@tempdimc\hbox\bgroup
673 \ignorespaces}

26

674 \def\endpicture{%
675 \egroup\hss\egroup
676 \ht\@picbox\@picht\dp\@picbox\z@
677 \tag_resume:n{\@picture}
678 \tag_socket_use:nnn{graphic/end}
679 {\picture@tag@bbox@attribute}
680 {\mbox{\box\@picbox}}}

7.7 Debugging code
This command puts a transparent layer in the size of the BBox over an graphic.

__tag_graphic_show_bbox:nnnnnn

681 \cs_new_protected:Npn __tag_graphic_show_bbox:nnnnnn #1#2#3#4#5#6%#5 color, #6 label name
682 {
683 \iow_log:n {tag/graphic~debug:~BBox~of~graphics~#6~is~#1~#2~#3~#4}
684 \hook_gput_code:nnn
685 {shipout/foreground}
686 {tag/graphic}
687 {
688 \int_compare:nNnT
689 {\g_shipout_readonly_int}
690 =
691 {\property_ref:een{#6}{abspage}{0}}
692 {
693 \put
694 (#1 bp,\dim_eval:n{-\paperheight + \dim_eval:n{#2 bp}})
695 {
696 \opacity_select:n{0.5}\color_select:n{#5}
697 \rule
698 {\dim_eval:n {#3 bp-\dim_eval:n{#1 bp}}}
699 {\dim_eval:n {#4 bp-\dim_eval:n{#2 bp}}}
700 }
701 }
702 }
703 }
704 \cs_generate_variant:Nn __tag_graphic_show_bbox:nnnnnn {VVVVne,nnnnne}
(End of definition for __tag_graphic_show_bbox:nnnnnn.)

705 ⟨/package⟩

706 ⟨∗latex-lab⟩
707 \ProvidesFile{graphic-latex-lab-testphase.ltx}
708 [\ltlabgraphicdate\space v\ltlabgraphicversion\space latex-lab wrapper graphic]
709 \RequirePackage{latex-lab-testphase-graphic}
710 ⟨/latex-lab⟩

27

	1 Introduction
	2 General implementation needs and ideas
	2.1 User interfaces
	2.1.1 Tagging mode of individual graphics
	2.1.2 Setting the tagging mode for a scope

	2.2 Default tagging mode
	2.3 Sockets, plugs and commands

	3 Sockets, plugs, commands
	4 Make \includegraphics tagging aware
	4.1 The BBox calculation
	4.2 User interface
	4.3 Hooks

	5 Make picture tagging aware
	5.1 User interface
	5.2 BBox calculation
	5.3 Tagging in text mode

	6 Make an l3draw environment tagging aware
	7 Implementation
	7.1 Variables
	7.2 Tagging sockets
	7.3 Tagging plugs
	7.3.1 Initialization of the tagging mode
	7.3.2 Main begin and end sockets

	7.4 Generic keys
	7.5 Tagging support for \includegraphics
	7.5.1 User interface: Additional keys.
	7.5.2 Patching graphics commands
	7.5.3 Calculating the BBox

	7.6 Support for the picture environment
	7.6.1 User interface
	7.6.2 Calculation of the BBox
	7.6.3 Patching the commands

	7.7 Debugging code

