\pdfdict_new:n

Updated: 2020-12-03

\pdfdict_set_eq:nn
\pdfdict_gset_eq:nn

New: 2020-06-16
Updated: 2020-12-03

The 13pdfdict module—tools for PDF' dictionaries
IXTEX PDF management bundle

The BTEX Project”

Version 0.96y, released 2026-01-23

1 I3pdfdict documentation

Many PDF objects are or contain dictionaries—structures containing a number of
(pdf-)name/value pairs. Examples are attributes of links, filespec dictionaries, xform
dictionaries, the catalog, the info dictionary. The commands in this module offer an
number of tools to handle such dictionaries. The module setups a name space for the
dictionary names and offers some commands to output dictionaries.

The dictionaries work in many respects like property lists with a few PDF specific
changes:

o The keys are always converted with \str_convert_pdfname:n to get a correct PDF
name;

e a key with a empty value can not be added, it will be ignored;

e there is a dedicated function to output the property as space separated list with
keys with slash: /keyl valuel /key2 value2.

Local and global dictionaries can be created.

1.1 User Commands

\pdfdict_new:n {(dictionary name)}

This function create a new local or global dictionary. Which one depends on (dictionary
name): If it begins with the standard g the dictionary is global, with 1 the dictionary is
local, other starting chars will give an error. It is recommended to begin the name in
the standard expl3 naming scheme with one or two underscores and a module name, so
g_module_XXXX or g__module_XXXX.

\pdfdict_set_eq:nn {(local dictionary name;)} {(dictionary names)}
\pdfdict_gset_eq:nn {(global dictionary name:)} {(dictionary name)}

This functions copy (dictionary names) into (local/global dictionary name;) lo-
cally or globally. If the dictionary (1ocal/global dictionary name;) doesn’t exist yet,
it will be created. If (dictionary names) doesn’t exist yet, an error will be raised.

*E-mail: latex-team@Ilatex-project.org

mailto:latex-team@latex-project.org

\pdfdict_put:nnn
\pdfdict_put:(nne|nee)
\pdfdict_gput:nnn
\pdfdict_gput:(nne|nee)

New: 2020-04-06

\pdfdict_item:nn *
\pdfdict_item:ne =

New: 2020-12-04

\pdfdict_use:n *

Updated: 2020-12-03

\pdfdict_show:n

Updated: 2020-12-03

\pdfdict_if_exist_p:n *
\pdfdict_if_exist:nIF %

Updated: 2020-12-03

\pdfdict_if_empty_p:n *
\pdfdict_if_empty:nTF x

Updated: 2020-12-03

\pdfdict_get :nnN

New: 2020-07-06

\pdfdict_put:nnn {(local dictionary)} {(name)} {(value)}
\pdfdict_gput:nnn {(global dictionary)} {(name)} {(value)}

This function puts key (name) and value (value) locally or globally in the (dictionary)
created with \pdfdict_new:n. {(name)} should be a PDF Name without the starting
slash. It will be stored with \str_convert_pdfname:n, so will be automatically correctly
escaped in case it contains slashes, spaces or other chars not allowed in a PDF name.
(value) should be a valid PDF value for this name in the target dictionary. The value
is neither converted nor escaped automatically. If the value is blank nothing is added to
the dictionary.

When adding a value keep in mind that the expansion behaviour of the backends
differ. Some backends expand a value always fully when writing to the PDF, with other
backends commands could end as strings in the PDF. This makes controlling the expan-
sion quite tricky. It is better to not rely on (value) to be expanded nor not expanded
by the backend commands.

\pdfdict_item:nn {(key)} {(value)}

A simple command to output key-value as /key value. This is needed to output dic-
tionaries in mapping commands. The command doesn’t do any escaping, it expects that
the name has been escaped when the value has been stored into the dictionary. If the
value is blank nothing is output. The command is expandable if the content is it.

\pdfdict_use:n {(dictionary)}

This outputs the property list of the dictionary as a list of /key value pairs. This can
be used e.g. when writing a dictionary object with \pdf_object_write:nne

\pdfdict_show:n {({dictionary)}

This shows the content of (dictionary) in the log and on the terminal.

\pdfdict_if_exist:n {(dictionary)}

This tests if the dictionary exists.

\pdfdict_if_empty:n {(dictionary)}

This tests if the dictionary is empty. The result is false if the dictionary doesn’t exist.

\pdfdict_get:nnN {(dictionary)} {(name)} (tl1 var)

Recovers the (value) stored by \pdfdict_put:nnn or \pdfdict_gput:nnn for (name)
and places this in the (token list variable). If (name) is not found then the (t1 var)
is set to the special marker \q_no_value. (name) is first converted with \str_convert_-
pdfname:n. The (token list variable) is set within the current TEX group.

\pdfdict_remove:nn
\pdfdict_gremove:nn

Updated: 2020-12-03

\pdfdict_remove:nn {(local dictionary)} {(name)}
\pdfdict_gremove:nn {(global dictionary)} {(name)}

Removes (name) and its associated (value) from the {(dictionary)} The removal is local
from local dictionaries and global from global dictionaries. If (name) is not found no
change occurs, i.e there is no need to test for the existence of a name before trying to
remove it. (name) is first converted with \str_convert_pdfname:n.

2 13pdfdict implementation

(@@=pdfdict)
(xheader)

s \ProvidesExplPackage{13pdfdict}{2026-01-23}{0.96y}

\g__pdfdict_names_seq
\g__pdfdict_gnames_seq

{Tools for PDF dictionaries (LaTeX PDF management bundle)}
(/header)

2.1 messages

(xpackage)
\cs_new:Npn __pdfdict_get_type:n #1
{
\str_case_e:nn { \str_head:n{#1} }
{
{g}{global}
{1}{local}
}
}

\msg_new:nnn { pdfdict } { show-dict }
{ 7%#1: name of the dictionary

%#2: expanded content

W#3: type

The~#3~dictionary~"'#1'~

\tl_if_empty:nTF {#2}
{ is~empty \\>~ . }
{ contains~the~pairs~(without~outer~braces): #2 . }

}
\msg_new:nnn { pdfdict } { unknown-dict }
{
The~dictionary~'#1'~is~unknown.
}
\msg_new:nnn { pdfdict } { dict-already-defined 1}
{
The~#2~dictionary~'#1'~is~already~defined.
}

> \msg_new:nnn { pdfdict } { empty-value }

{ The~value~#1~for~#2~is~blank~and~will~be~ignored }
\msg_new:nnn { pdfdict } { invalid-name }

{ Name~'#1'~is~not~valid\\
Names~of~dictionaries~should~start~with~'g_'~or~'1l_"' }

2.2 Creating dictionaries

Two seq to store the used names for diagnostics.

39 \seq_new:N \g__pdfdict_lnames_seq
w0 \seq_new:N \g__pdfdict_gnames_seq

(End of definition for \g__pdfdict_names_seq and \g__pdfdict_gnames_seq.)

__pdfdict_name:
__kernel_pdfdict_name:
__pdfdict_new:
\pdfdict_new:

This are the commands to create new dictionaries and to access their internal name. All
internal names start with g__pdfdict_/ or 1__pdfdict_/.

B B B B

For the other modules we also need a kernel command to access the internal name to
speed up the code and allow the use standard commands of the prop module to deal with
the dictionaries. For example

\prop_clear:c { __kernel pdfdict_name:n { name }}

41 \cs_new:Npn __pdfdict_name:n #1 7 #1 dictionary name

42 {
a3 \str_head:n{#1}__pdfdict_/#1_prop
44 }

25 \cs_set_eq:NN __kernel_pdfdict_name:n __pdfdict_name:n

47 \cs_new_protected:Npn __pdfdict_new:n #1

48 {

49 __pdfdict_if_exist:nTF { #1 }

50 {

51 \msg_error:nnee

52 { pdfdict }

53 { dict-already-defined }

54 { \tl_to_str:n {#1} }

55 { __pdfdict_get_type:n{#1} }

56 ¥

57 {

58 \str_case_e:nnF { \str_head:n{#1} }

59 {

60 {g}

61 {

62 \prop_new:c { __pdfdict_name:n { #1 } }

63 \seq_gput_right:cn {g__pdfdict_gnames_seq} { #1 }
64 }

65 {1}

66 {

67 \prop_new:c { __pdfdict_name:n { #1 } }

68 \seq_gput_right:cn {g__pdfdict_lnames_seq} { #1 }
69 }

70 }

71 {

” \msg_error:nne{pdfdict}{invalid-name}{\t1l_to_str:n{#1}}
73 }

74 ¥

75 }

77 \cs_set_eq:NN \pdfdict_new:n __pdfdict_new:n

(End of definition for __pdfdict_name:n and others. This function is documented on page 1.)

__pdfdict_set_eq:nn
\pdfdict_set_eq:nn

__pdfdict_gset_eq:nns \cs_new_protected:Npn __pdfdict_set_eq:nn #1 #2
\pdfdict_gset_eq:nn” {

80 __pdfdict_if_exist:nTF { #2 }

81 {

82 __pdfdict_if_exist:nF { #1 }

83 {

84 __pdfdict_new:n { #1 }

85 }

86 \prop_set_eq:cc { __pdfdict_name:n {#1} }{ __pdfdict_name:n {#2} }
87

88 {

89 \msg_error:nnn { pdfdict } { unknown-dict } { #1 }
9% }

01 }

92
o3 \cs_set_eq:NN \pdfdict_set_eq:nn __pdfdict_set_eq:nn
94

os \cs_new_protected:Npn __pdfdict_gset_eq:nn #1 #2

96 {

o7 __pdfdict_if_exist:nTF { #2 }

98 {

99 __pdfdict_if_exist:nF { #1 }

100 {

101 __pdfdict_new:n { #1 }

102 }

103 \prop_gset_eq:cc { __pdfdict_name:n {#1} }{ __pdfdict_name:n {#2} }
104 3

105 {

106 \msg_error:nnn { pdfdict } { unknown-dict } { #1 }
107 3

108 }

10 \cs_set_eq:NN \pdfdict_gset_eq:nn __pdfdict_gset_eq:nn
(End of definition for __pdfdict_set_eq:nn and others. These functions are documented on page 1.)
__pdfdict_if_exist_p:n

__pdfdict_if_exist:nTF
\pdfdict_if_exist_p:n

Existence tests.

\pdfdict_if_exist:nTF, %local
112 \prg_new_conditional:Npnn __pdfdict_if_exist:n #1 {p , T , F , TF }

113 {

114 \prop_if_exist:cTF

115 { __pdfdict_name:n { #1 } }
116 { \prg_return_true: }

117 { \prg_return_false: }

118 ¥

119 \prg_set_eq_conditional:NNn
10 \pdfdict_if_exist:n __pdfdict_if _existin {p , T , F , TF }

(End of definition for __pdfdict_if_exist:nTF and \pdfdict_if_exist:nTF. This function is docu-
mented on page 2.)

__pdfdict_if_empty_

__pdfdict_if_empty:

\pdfdict_if_empty_

\pdfdict_if_empty:

__pdfdict_put:
\pdfdict_put:
__pdfdict_gput:
\pdfdict_gput:

p:n
nTF
p:n
nLFil

122

nnn
nnn
nnn

Tests for emptiness.

\prg_new_conditional:Npnn __pdfdict_if_empty:n #1 {p , T , F , TF }
{
\prop_if_empty:cTF
{ __pdfdict_name:n { #1 } }
{ \prg_return_true: }
{ \prg_return_false: }
}

\prg_set_eq_conditional:NNn
\pdfdict_if_empty:n __pdfdict_if_empty:n { p , T , F , TF }

(End of definition for __pdfdict_if_empty:nTF and \pdfdict_if_empty:nTF. This function is docu-
mented on page 2.)

These are the commands to store values into the dictionaries. The main difference to
adding values to a normal property list is, that the keys are converted with \str_-
convert_pdfname:n and that empty values are ignored.

\cs_new_protected:Npn __pdfdict_put:nnn #1 #2 #3 ¥#1 (local) dict, #2 name, #3 value
{
\tl_if_blank:nTF { #3 }
{
\msg_warning:nnnn { pdfdict }{ empty-value }{ #2 } { #1 }
}
{
__pdfdict_if_exist:nTF { #1 }
{
\exp_args:Nne \prop_put:cnn
{ __pdfdict_name:n { #1 } }{ \str_convert_pdfname:n { #2 } } { #3 }
}
{
\msg_error:nnn { pdfdict } { unknown-dict } { #1 }
}

}

\cs_set_eq:NN \pdfdict_put:nnn __pdfdict_put:nnn
\cs_generate_variant:Nn \pdfdict_put:nnn {nne,nno,nee,nnx}

> \cs_new_protected:Npn __pdfdict_gput:nnn #1 #2 #3 J#1 global dict, #2 name, #3 value

{
\tl_if_empty:nTF { #3 }
{
\msg_warning:nnnn { pdfdict }{ empty-value }{ #2 } { #1 }
}
{
__pdfdict_if_exist:nTF { #1 }
{
\exp_args:Nne \prop_gput:cnn
{ __pdfdict_name:n { #1 } }{ \str_convert_pdfname:n { #2 } } { #3 }
}

164 {

165 \msg_error:nnn { pdfdict } { unknown-dict } { #1 }
166 }

167 }

168 }

169

o \cs_set_eq:NN \pdfdict_gput:nnn __pdfdict_gput:nnn

171 \cs_generate_variant:Nn \pdfdict_gput:nnn {nne,nno,nee,nnx}

=y

(End of definition for __pdfdict_put:nnn and others. These functions are documented on page 2.)

__pdfdict_get:nnN Recover the values. The name must be first escaped to match the stored name.
\pdfdict_get:nnN
172 \cs_new_protected:Npn __pdfdict_get:nnN #1 #2 #3 Jdict,key,macro

173 {

174 __pdfdict_if_exist:nTF { #1 }

175 {

176 \exp_args:Nne \prop_get:cnN

177 { __pdfdict_name:n { #1 } }

178 { \str_convert_pdfname:n { #2 } } #3
179 ¥

180 {

181 \msg_error:nnn { pdfdict } { unknown-dict } { #1 }
182 ¥

183 }

184

155 \cs_set_eq:NN \pdfdict_get:nnN __pdfdict_get:nnN

(End of definition for __pdfdict_get:nnN and \pdfdict_get:nnN. This function is documented on page
2.)

__pdfdict_remove:nn This removes a name/value pair from a dictionary. The name has to be passed through
\pdfdict_remove:nn the escaping.
__pdfdict_gremove:nn
\pdfdict_gremove:nn \cS_new_protected:Npn __pdfdict_remove:nn #1 #2 Jdict,name

187 {

188 __pdfdict_if_exist:nTF { #1 }

189 {

190 \exp_args:Nne \prop_remove:cn

101 { __pdfdict_name:n { #1 } }{ \str_convert_pdfname:n { #2 } }
192 }

193 {

104 \msg_error:nnn { pdfdict } { unknown-dict } { #1 }

195 }

196 }

107 \cs_set_eq:NN \pdfdict_remove:nn __pdfdict_remove:nn
198

190 \cs_new_protected:Npn __pdfdict_gremove:nn #1 #2 %dict,name

200 '{

201 __pdfdict_if_exist:nTF { #1 }

202 {

203 \exp_args:Nne \prop_gremove:cn

204 { __pdfdict_name:n { #1 } }{ \str_convert_pdfname:n { #2 } }
205 }

206 {

__pdfdi ct_show:Nn
\pdfdict_show:n

__pdfdict_item:nn
__pdfdict_item:ne
\pdfdict_item:nn
\pdfdict_item:ne

__pdfdict_use:n
\pdfdict_use:n

239

\msg_error:nnn { pdfdict } { unknown-dict } { #1 }
}
}

\cs_set_eq:NN \pdfdict_gremove:nn __pdfdict_gremove:nn
(End of definition for __pdfdict_remove:nn and others. These functions are documented on page 3.)

This allows to show the content of dictionaries. It also displays if a dictionary is local or
global. If both exists both are shown.

\cs_new_protected:Npn __pdfdict_show:Nn #1#2 #1 message command, #2 dict

{
\prop_if_exist:cTF { __pdfdict_name:n { #2 } }

{
#1
{ pdfdict }
{ show-dict }
{ \tl_to_str:n {#2} }
{ \prop_map_function:cN {__pdfdict_name:n { #2 }} \msg_show_item:nn }
{ __pdfdict_get_type:n{#2} }
{7
¥
{
#1 { pdfdict } { unknown-dict } { #2 } {}{}{}
¥
}
\cs_new_protected:Npn \pdfdict_show:n #1
{
__pdfdict_show:Nn \msg_show:nneeee {#1}
}

(End of definition for __pdfdict_show:Nn and \pdfdict_show:n. This function is documented on page

\cs_new:Npn __pdfdict_item:nn #1 #2 #1 name, #2 value

{
\tl_if_blank:nF {#2} { /#1~#2~ }
}

s \cs_generate_variant:Nn __pdfdict_item:nn {ne}

\cs_set_eq:NN \pdfdict_item:nn __pdfdict_item:nn

¢ \cs_generate_variant:Nn \pdfdict_item:nn {ne}

(End of definition for __pdfdict_item:nn and \pdfdict_item:nn. This function is documented on page

__pdfdict_use:n outputs a prop as needed in a dictionary: as a list of /(key) (value)
pairs.

\cs_new:Npn __pdfdict_use:n #1 J#1 dict
{
\prop_map_function:cN { __pdfdict_name:n { #1 } } __pdfdict_item:ne
}

\cs_set_eq:NN \pdfdict_use:n __pdfdict_use:n

(End of definition for __pdfdict_use:n and \pdfdict_use:n. This function is documented on page 2.)

25 {/package)

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

cs commands:

\cs_generate_variant:Nn
150, 171, 236, 238
\cs_new:Npn 7,41, 232, 239
\cs_new_protected:Npn 47,
78, 95, 131, 152, 172, 186, 199, 212, 228
\cs_set_eq:NN 45, 77, 93,
110, 149, 170, 185, 197, 211, 237, 244

E

exp commands:

140, 161, 176, 190, 203

\exp_args:Nne ..

K

kernel internal commands:

__kernel_pdfdict_name:n 41, 45

M

msg commands:

\msg_error:nnnn 51
\msg_new:nnn 15, 24, 28, 32, 35
\msg_show:nnnnnn 230
\msg_show_item:nn 220
\msg_warning:nnnn 135, 156
P
pdf commands:
\pdf_object_write:nnn 2
pdfdict commands:
\pdfdict_get:nnN 2,172, 185
\pdfdict_gput:nnn 2, 131, 170, 171
\pdfdict_gremove:nn 3, 186, 211
\pdfdict_gset_eq:nn 1,78, 110
\pdfdict_if_empty:n 2, 130
\pdfdict_if_empty:nTF 2,121
\pdfdict_if_empty_p:n 2,121
\pdfdict_if_exist:n 2,120

\msg_error:nnn
72, 89, 106, 144, 165, 181, 194, 207

\pdfdict_if_exist:nT
\pdfdict_if_exist_p:
\pdfdict_item:nn
\pdfdict_new:n
\pdfdict_put:nnn
\pdfdict_remove:nn
\pdfdict_set_eq:nn
\pdfdict_show:n
\pdfdict_use:n
pdfdict internal commands:
__pdfdict_get :nnN
__pdfdict_get_type:
\g__pdfdict_gnames_s

__pdfdict_gput:nnn

__pdfdict_gremove:n
__pdfdict_gset_eq:n
__pdfdict_if_empty:
__pdfdict_if_empty:
__pdfdict_if_empty_
__pdfdict_if_exist:
__pdfdict_if_exist:

82,97, 99, 111, 138

__pdfdict_if_exist_p:n

__pdfdict_item:nn
232

F 2, 111
no....... 2, 111
2, 232, 237, 238
..... 1, 2,41, 77
2,131, 149, 150
...... 3, 186, 197
....... 1, 78, 93
...... 2, 212, 228
...... 2, 239, 244
. 172,172, 185
n.... 7,55, 221
eq 39
131, 152, 170
n .. 186, 199, 211
n 78,95, 110
no..... 121, 130
nTF 121
p:n ... 121
no..... 112, 120
nTF 49, 80,

, 159, 174, 188, 201

111

, 232, 236, 237, 241

\g__pdfdict_lnames_seq 39
__pdfdict_name:n 41,
41, 45, 62, 67, 86, 103, 115, 124,
141, 162, 177, 191, 204, 214, 220, 241
\g__pdfdict_names_seq 39
__pdfdict_new:n 41, 47, 77, 84, 101
__pdfdict_put:nnn . 131, 131, 149
__pdfdict_remove:nn ... 186, 186, 197
__pdfdict_set_eq:nn 78, 78, 93
__pdfdict_show:Nn . 212,212, 230
__pdfdict_use:n 8, 239, 239, 244
prg commands:
\prg_new_conditional:Npnn 112, 121
\prg_return_false: 117, 126
\prg_return_true: 116, 125
\prg_set_eq_conditional:NNn 119, 129
prop commands:
\prop_get:NnN 176

\prop_gput:Nnn 161 S

\prop_gremove:Nn 203 seq commands:
\prop_gset_eq:NN 103 \seq_gput_right:Nn 63, 68
\prop_if_empty:NTF 123 \seq_new:N 39, 40
\prop_if_exist:NTF 114, 214 Str commands:
\prop_map_function:NN 9220, 241 \str_case_e:nn 9
\PTOP_0eW:N - oot 62, 67 \str_case_e:nnTF 58
\prop_put:Nnn 140 \str_convert_pdfname:n
cUO T T 1-3, 6, 141, 162, 178, 191, 204
\prop_remove:Nn 190 \Str_head:n 9, 43, 58
\prop_set_eq:NN 86
\ProvidesExplPackage 3 T
tl commands:
Q \tl_if blank:nTF 133, 234
quark commands: \tl_if_empty:nTF 20, 154
\gq_no_value 2 \tl_to_str:n 54, 72, 219

10

	1 l3pdfdict documentation
	1.1 User Commands

	2 l3pdfdict implementation
	2.1 messages
	2.2 Creating dictionaries

	Index
	Symbols
	C
	E
	K
	M
	P
	Q
	S
	T

