The 13pdffield module
Commands to create form fields
IXTEX PDF management bundle

The BTEX Project”

Version 0.96y, released 2026-01-23

1 13pdffield Introduction

The implementation of form fields in hyperref has some bugs®. This package is a first
step towards the goal to review and improve the code of form fields.

It is a temporary package: the definite home of the code is not yet decided, and
during the development changes in the interfaces are possible.

The package itself is currently loaded with

\usepackage{13pdffield}

The source code is split into various submodules. All code is combined in the sty,
but the documentation is in individual PDF.

13pdffield This contains the basic commands and keys to create a form field.
13pdffield-checkbox The code to created checkboxes.

13pdffield-textfield The code to created text fields.

13pdffield-radiobutton The code to create radio buttons.

13pdffield-pushbutton The code to create push buttons.

13pdffield-choice The code to create choice fields (lists and drop-down/combo fields.
13pdffield-action Code related to actions, mostly submit and reset actions.
13pdffield-signature (not done yet) Code for signature fields

Form initialization (not done yet) The \Form command/environment of hyperref ini-
tialize a few things like fonts for text fields which should be moved. It is not strictly
necessary to have this code, most examples works without it, but in case of problems
it is possible to do the initialization by using the hyperref command.

*E-mail: latex-team@Ilatex-project.org
Isee for example https://github.com/latex3/hyperref/issues/94

mailto:latex-team@latex-project.org
https://github.com/latex3/hyperref/issues/94

The code requires the new PDF management. The code makes use of 13pdfxform to
create the form Xobjects of the appearances. This code doesn’t support yet the the dvips
backend.

The code targets PDF 2.0. This doesn’t mean that it won’t work in older PDF ver-
sions, but it tries to implement requirements needed or recommended for 2.0; most impor-
tantly appearances are used by default everywhere and it deprecates /NeedAppearances.

Please keep in mind

e Not every PDF viewer supports form fields or all types and features.

e The handling can depend on settings in the PDF viewer. In adobe reader for
example I had to disable an option to avoid that it tries to create an appearance
itself.

 Standards like pdf/A disable some features of form fields like javascript actions (as
you typically can’t change the PDF).

If hyperref is loaded before the package will suppress the deprecated /NeedAppearances
setting. If hyperref is loaded later you should do it in the \Form options.
So a typical use together with hyperref could look like this

\DocumentMetadata{}
\documentclass{article}
\usepackage{hyperref}
\usepackage{13pdffield}
\begin{document}

\Form

or

\RequirePackage{pdfmanagement}
\documentclass{article}
\usepackage{hyperref}
\usepackage{13pdffield}
\begin{document}

\Form

2 Some background

A document can contain a arbitrary number of fields which can be organized in trees.
The leaf fields in such a tree, the terminal fields, typically have widget annotations as
kids which are then the actual, visual instances of the field, and allow to interact with
the field. I will call such a tree a fieldset, nodes fields and the widget annotation field
annotations.

If a field has only one child annotation the content of the field dictionary and the
widget annotation dictionary can be merged—some examples in the PDF reference show
such merged dictionaries—but the code here keeps them separate, at the end this is
clearer.

A simple example would look like this

In many cases a fieldset consists of only one field along with its field annotation(s),
but larger sets can be needed to build more complex interactions with javascript code.
For example a datepicker can be built as a fieldset with various fields to represent the
month and year choice and to select days.

Fields in a fieldset should have a name, for example wen or week in the example
above. This name is the partial name of the field, the full name is than built from it by
adding the names of the parents separated by periods. In the example above the partial
name is mon and the full name week.mon. Partial names shouldn’t contain periods. If
two fields have the same name they will work in unison: if you enter text in one field, the
text appears also in the other, such fields must have the same type and the same value
and default value entry. If a field has no name it is considered to be a simple widget
annotation and so only another representation of its parent.

All terminal fields should also have a type, e.g. Btn for a button field, or Tx for a
textfield. The type can be set for the parent and then inherited. The fields in a fieldset
can have different types.

2.1 The look of a field: Appearances and other settings

The look of widget annotation of a field can be set with various keys. The keys de-
veloped over time and some of them supersede older ones. There is for example the
simple /Border, the more sophisticated /BS (“border style dictionary”), the “dynamic
appearance dictionary” MK, with lots of keys, and the appearance dictionary /AP which
may define as many as three separate appearances: the normal appearance (required),
the rollover appearance and the down appearance. Such an appearance can be a simple
form XObjects 2 , but in some cases the annotation can have different appearance states:
a checkbox for example can be checked or unchecked, in this case the appearances are
dictionaries which maps state names like /Yes and /0ff to form XObjects.

The annotations cover a rectangular area on the page and form XObjects appear-
ances are squeezed into this rectangle. So for the best result both should have the same
ratio of width and height. Simple plain backgrounds can also be created in large size and
reused for various annotations. Form XObjects used as appearances can not be rotated,
if needed one has to create a new appearance.

In PDF 2.0 widget annotations must have at least a normal /AP appearance (unless
the size of the annotation is zero) and the keys “C, IC, Border, BS, BE, BM, CA, ca,
H, DA, Q, DS, LE, LL, LLE, and Sy shall be ignored”. But it is quite unclear if PDF
Viewer honor this, and if this make sense e.g. for text fields which require a DA entry.
It is also not clear how appearances and the entries of the MK dictionary are related in
a form field. Tests with some PDF viewers are needed here.

2Such form XObjects are small pictures stored in the PDF which can be referenced in various part
of the PDF. They can be created with the commands of the 13pdfxform package.

\pdffield_field:nn

\pdffield_annot:n

2.2 Tagged PDF

Field annotations are (like link annotations) not part of the page stream. But they are
obviously nevertheless meaningful content and must be consider if a PDF is “tagged”,
that means if a structure is added.

According to the PDF references fields should be tagged by adding a Form structure
element containing the object reference to a field annotations. Fields with more than
one annotation like radio buttons need a Form structure for every one. Additional some
cross references to structure relevant object like the parent tree are needed, for more info
check the documentation of the tagpdf package.

The commands of this module already contain the needed support. So if tagpdf is
used and tagging activated the fields will be added as Form element to the structure where
they are created. It is possible to deactivate tagging for a field annotation by setting the
tag to false as described below.

If lualatex is used tagging require either that tagpdf is used with the option global-
mc, or mc-chunks must be correctly closed manually, as the automatic code can’t escape
the grouping.

It is recommended to use the TU/altname key to give the field a readable name.

3 Commands

\pdffield_field:nn {(key val list)} {(field ID)}

This creates a new field. (field ID) will be used to create and reference the needed
objects but it is not the direct object name, so pdf_object_ref:n can not be used
to access (and there will not clash with object names). It is recommended to start
the name with a module prefix to avoid name clashes, so e.g. mymodule/field/1 or
mymodule/field/week.

The list of handled keys is described below. Typically the (key val list) should
at least set the name T, fields that are kids in a fieldset must set the parent key, this
should point to a field declared before.

The command is meant as a basic command to build more complex variants like
checkbox or textfields. For this reason it doesn’t check if the combination of values and
flags are sensible, and it uses as key names the names from the PDF reference. If you
create a button field (Btn) and set MaxLen (which is only known for text fields), it will
not complain.

Root fields (fields without parent) are added automatically to the Catalog/AcroForm
dictionary with

\pdfmanagement_add:nne{Catalog/AcroForm}{Fields}{<obj ref>}

\pdffield_annot:n {(key val list)}

This creates a new field annotation. It is a widget annotation box created with
\pdfannot_widget_box:nnn, and it is possible to add values to its dictionary by using
\pdfannot_dict_put:nnn {widget}.... But to correctly setup the parent/kid relation-
ship some additional wrapper code is needed. The command also setup dictionaries to
fill the AP, MK and AA dictionaries.

\pdffield_annot_ref_last:

\pdffield_appearance:nn

\pdffield_setup:n

create-style

style

preset-checkbox

preset-radio

preset-textfield

value
default

\pdffield_annot_ref_last:

If a tagged PDF should be created, the object of the annotation of a field should be
referenced in the Form structure element. This command allows to retrieve the reference
to this object.

\pdffield_appearance:nn {(name)} {(content)}

This is a small wrapper around \pdfxform_new:nnn (which could be used too) to create
an appearance. To avoid name clashes (name) should start with a module part, e.g.
mymodule/appearance/cross.

\pdffield_setup:n {(key val list)}

This command allows to preset some field settings.
It knows currently the following keys:

create-style = {(name)}{(key val list)}

This defines a style which can then be used with the style key. {(key val list)} can be
an arbitrary collection of the keys of the module.

style = {(style)}

This uses a style define with the previous create-style.

preset-checkbox = {(key val list)}
This allows to set default keys for a checkbox.

preset-radio = {(key val list)}

This allows to set default keys for a radio button.

preset-textfield = {(key val list)}
This allows to set default keys for a text field.

4 Special keys

value = {(value)}
default = {(value)}

These two keys pass the value to a handler which can be redefined. Their exact behaviour
depends on field type. Please check their documentation.

Table 1: Keys for fields

key value required inheritable remark
parent field ID for non-root fields

style style name defined with create-style

T, name string mostly

TU, altname string

TM, mappingname string

FT name terminal fields yes

setFf, list of flags yes

setfieldflags

unsetFf, list of flags yes

unsetfieldflags

\Y various yes

DV various yes

MaxLen integer with Comb yes only textfields
Lock object name signature field
SV object name signature field
Opt object name buttons and che
TI integer list fields

I object name list fields
AA/K, keystroke javascript

AA/F, format javascript

AA/V, validate javascript
AA/C, calculate javascript

DA string yes yes variable text
Q 0,1or2 yes variable text
DS (ignored)
RV (ignored)

5 Field Keys

Table 1 summarize the keys which can be used. A number of keys have two names, the
second is normally the name used by hyperref. Where is makes sense an empty value
“unsets” a key.

parent parent = (field ID)

This declares the parent of the field. It is required if the field is not the root of the
fieldset. The value is the field ID of the parent, the parent should have been already
declared. It will add the reference to the parent field to the /Parent key, and also add
reference of the kid as /Kid in the parent field.

name name = (partial name)
T T = (partial name)

This sets the partial name of the field. It shouldn’t contain a period, be not empty and
sensibly consist of simple ascii chars. It is normally required, see above. The value is
passed through \pdf_string_from_unicode:nnN.

altname altname = (string)
TU TU = (string)

This sets an alternative name for user interaction. Unlike the name field it can use
unicode or periods. The value is passed through \pdf_string_from_unicode:nnN

mappingname mappingname = (string)
™ TM = (string)

This sets an alternative name for the export. The value is passed through \pdf_string_-
from_unicode:nnN

FT FT = Btn|TxIChlSig

This sets the type of the field, the value should be one of Btn (button), Tx (text), Ch
(choice), Sig (signature). The value is of relevance only for terminal fields, but it can be
set in a parent and then inherited.

setfieldflags setfieldflags = (comma list of flags)

setFf setFf = (comma list of flags)
unsetfieldflags unsetfieldflags = all | (comma list of flags)
unsetFf unsetFf = all | (comma list of flags)

These keys accept a list of flag names and then sets or unsets them, the resulting value
is then used with the /Ff key. Depending on the field type some flags must be set or
unset, other are optional or are ignored. The flag name can be given in PDF spelling
(RadiosInUnison), in lowercase (radiosinunison), and as number. unsetFf and its
alias unsetfieldflags know the special value all which clears all the fields.

The list of flags are: ReadOnly, Required, NoExport, Multiline, Password,
NoToggleToOff, Radio, Pushbotton, Combo, Edit, Sort, FileSelect, MultiSelect,
DoNotSpellCheck, DoNotScroll, Comb, RadiosInUnison, RichText, CommitOnSelChange.

v

DV

MaxLen

Lock

SV

TI

—

V = (various)

This sets the value of the field. Its format varies depending on the field type, so typically
commands for the various type will have to preprocess and sanitize it. The value given
here is x-expanded and then added to the dictionary! See the descriptions of individual
field types for further information. (Pushbuttons for example don’t have a value).

DV = (various)

The default value, to which the field reverts when a reset-form action is executed. The
format of this value is the same as that of DV.

MaxLen = (integer)

Only relevant for textfields. The value is an integer and describes the maximum length
of the field’s text in characters. Required if the Comb flag is used.

MaxLen = (object name)

Only relevant for signature fields. The value is an object name which should point to a
dictionary that specifies a set of form fields that shall be locked when this signature field
is signed. The exact format of the dictionary is described in the PDF reference.

SV = (object name)

Only relevant for signature fields. The value is an object name which should point to
a seed value dictionary. The exact format of the dictionary is described in the PDF
reference.

Opt = (object name)

Only relevant for checkboxes, radiobuttons and choice fields. The value is an object name
which should point to a array. The exact format of the array is described in the PDF
reference.

TI = (integer)

Only relevant for scrollable list boxes. The value is an integer, the top index (the index
in the Opt array of the first option visible in the list). Default value: 0

I = (object name)

For choice fields that allow multiple selection (MultiSelect flag set). The value is an
object name which should point to a array. The exact format of the array is described
in the PDF reference (I have no idea what exactly should be added there, perhaps some
future test will make it more understandable.)

The following four keys are used to add javascript (“ECMAScript”) code. The values
are expanded. It is recommended to store the javascript in a stream object and to pass
the object reference, but passing a string (including parentheses) is possible too. The
keys will be ignored if a pdfstandard is used that prohibits such actions.

AA/K
keystroke

AA/F
format

AA/V
validate

AA/C
calculate

sortkey

align

DS
RV

fieldID

AA/K = (ECMAScript)
keystroke = (ECMAScript)
This adds a keystroke action to the additional action dictionary. The action is meant for

text and choice fields. It is quite unclear if such an action make sense for non-terminal
fields.

AA/F = (ECMAScript)
format = (ECMAScript)
This adds a format action to the additional action dictionary. The action is meant for

text and choice fields. It is quite unclear if such an action make sense for non-terminal
fields.

AA/V = (ECMAScript)

validate = (ECMAScript)

This adds a validate action to the additional action dictionary. It is quite unclear if such
an action make sense for non-terminal fields.

AA/C = (string (ECMAScript))

calculate = (string (ECMAScript))

This adds a calculate action to the additional action dictionary. It is quite unclear if such
an action make sense for non-terminal fields. If an calculate action is used, the field will
be added to the AcroForm/CO array to define the calculation order. The order can be
controlled through the following key sortkey.

sortkey = (string)

This sets a sortkey for fields with calculate action. The sortkeys are sorted lexically with
\str_compare:nNnTF. fields without sortkey will get an empty sortkey and so be at the
begin, the order of fields with the same sortkey is not defined. The module only sorts
fields created with the commands of this module, the sorting of fields created by hyperref
is independent.

DA = (string)

This contains instructions for the text in text fields. It is stored expanded and parentheses
are added around the value.

Q = left|center|right
align = left|center|right

The justification of the text.

These two keys are currently not implemented as it is unclear if there are of any use.

fieldID = (field ID)

For experts only! This stores (field ID) in an internal variable. The variable is not used
by the basic commands, but by the commands to create the various field types. Check
their documentation for use cases.

width
height
depth

parent

AP/N

appearance

AP/R
rollover-appearance
AP/D
down-appearance

Table 2: Keys for field annotations

key value required remark
parent field ID yes
width dim expression (yes) default is Opt
height dim expression (ves) default is Opt
depth dim expression (ves) default is Opt
AP/N appearance name yes (in PDF 2.0)
AP/R appearance name yes (in PDF 2.0)
AP/D appearance name yes (in PDF 2.0)
AS name yes (in PDF 2.0)
setF list of flags
unsetF list of flags
AA/* javascript *=F, Bl, D, U, E,

X, PO, PC,PV, PI
MK/ * various *= R, BC, BG, CA, RC,

AC, 1, RI, IX, IF, TP

6 Annot keys

Table 2 summarize the keys which can be used. A number of keys have alias names which
are mentioned in the descriptions.

width = (dim expression)

height = (dim expression)

depth = (dim expression)

These keys allow to set the dimensions of the annotation. The value should be a command
that expands to a dimension expression. By default all values are zero.

tag = truelfalse

This key is related to tagging and enables/disables the tagging.

parent = (field ID)
This sets the parent. The value should be field ID of an already declared field.

AP/N = (appearance name)

appearance = (appearance name)

AP/R = (rollover appearance name)
rollover-appearance = (rollover appearance name)
AP/D = (down appearance name)

down appearance = (down appearance name)

This keys set the normal, rollover and down appearance. The names appearance,
rollover-appearance and down-appearance are aliases. The value is by default a
simple name of an appearance/form Xobject but modules like I3pdffield-checkbox change
this to allow to add appearances for various states. So check the documentation for the
various field types for the exact format of the value.

10

AS AS = (appearance state name)

This key sets the default appearance state. The value is a name without the starting slash
(it is passed through \pdf_name_from_unicode_e:n), for checkbox for example Yes. If
used it should typically have the same value as the V and DV key of the field.

setannotflags setannotflags = (comma list of flags)

setF setF = (comma list of flags)
unsetannotflags unsetannotflags = all | (comma list of flags)
unsetF unsetF = all | (comma list of flags)

These keys allow to set or unset the annot flags. They expect a comma lists of flag
names. Allowed names Invisible, Hidden, Print, NoZoom,NoRotate, NoView, ReadOnly,
Locked, ToggleNoView, LockedContents, or the lowercase variants or numbers.

AA/* AA/* = (ECMAScript)

* should be one of Fo, B1, D, U, E, X, PO, PC, PV, PI. Alias names for the first six keys are
onfocus, onblur, onmousedown, onmouseup, onenter, onexit. These keys adds then the
respective key to the /AA dictionary of the field annotation object. Their value should
be javascript code. The value is expanded but not escaped. It is recommended to store
the code in a stream object and to use the object reference as value. The /AA dictionary
is suppressed if a pdf/A standard is set.

For example

onenter={(app.alert('Hello');)}

The following keys add values to the dynamic appearance dictionary MK directory.
This is only relevant for annotations with dynamic content, like e.g. textfields. The set-
tings can also affect checkboxes and radio buttons if the (deprecated) NeedAppearances
is set to true.
The MK dictionary can also be added by using \pdfannot_dict_put:nnn{Widget}{MK}{...}
but the two methods should not be mixed.

MK/R MK/R = 0O

90 | 180 | 270
rotate rotate |

|
0 90 | 180 | 270
These rotates the content of the annotation.

MK/BC MK/BC = (color expression) | [{(model)]l{(values)}
bordercolor bordercolor = (color expression) | [{(model)]{(values)}

These colors the border. Internally currently RGB is used. The colors used in (color
expression) must be known to the I3color commands.

MK/BG MK/BG = (color expression) | [(model)]l{(values)}
backgroundcolor backgroundcolor = (color expression) | [{(model)]{(values)}

These colors the background. Internally currently RGB is used. The colors used in
(color expression) must be known to the I3color commands.

11

MK/CA MK/CA = (string)

caption caption = (string)
This sets a text for the caption. (string) is passed through \pdf_string_from_-
unicode:nnN and parentheses are added automatically. The font used seems to depend
on the whims of the PDF reader: At least for checkboxes adobe reader quite insists to
always use a symbol font and not a text font. It also shows always only one symbol,
regardless how much one put in the string. hyperref uses the key names checkboxsymbol
and radiosymbol for this setting.

MK/RC MK/RC = (string)
rollover-caption rollover-caption = (string)

This sets a text for the rollover-caption. (string) is passed through \pdf_string_-
from_unicode:nnN and parentheses are added automatically. The key should be used
only with pushbuttons. It is unclear if is actually used by the PDF viewer, but the
pushbuttons modules uses the argument also to setup the appearance.

MK/AC MK/AC = (string)

down-caption down-caption = (string)
This sets a text for the down-caption. (string) is passed through \pdf_string_from_-
unicode:nnN and parentheses are added automatically. The key should be used only with
pushbuttons. It is unclear if is actually used by the PDF viewer, but the pushbuttons
modules uses the argument also to setup the appearance.

The remaining key are like the two above useful for pushbuttons only. Currently no

special syntax support is implemented. They will be handled if needed when the code
for push buttons is developed and tested.

MK/I MK/* = (various)

ﬁi;?; These keys adds the various entries in the dynamic appearance dictionary. * should be one

MK/ TF of I, RI, IX, IF, TP. The MK dictionary can also be added by using \pdfannot_dict_put:nnn{Widget}{MK]
Mk/Tp but the two methods should not be mixed.

7 13pdffield Implementation

1 (xpackage)

> (@@=pdffield)

5 \NeedsTeXFormat{LaTeX2e}

+ \ProvidesExplPackage{13pdffield}{2026-01-23}{0.96y}%
5 {form fields}

7.1 hyperref specific command
hyperref sets NeedAppearances by default. As this is deprecated we disable this.

6 \csname HyFieldONeedAppearancesfalse\endcsname J suppress NeedAppearances

12

7.2 local variables

\1__pdffield_tmpa_str Some tmp variables, and a variable for the current parent and the current fieldID.
\1__pdffield_tmpb_str
\1__pdffield_tmpa_t17 \Str_new:N \1__pdffield tmpa_str

\1__pdffield_tmpa_keys_tl°® \str_new:N \1__pdffield_tmpb_str

\l_pdffield currentparent tl o \tl_new: \1__pdffield tmpa_tl

\1__pdffield fieldID_ t1" \tl_new:N \1__pdffield_tmpa_keys_tl
-) - 7 1 \tl_new: \1__pdffield_currentparent_tl
M_pdffield caption tL \i1"houiy \1__pdffield fieldID_tl
U_}dﬁldd}oﬁomr}aﬁlmLH“ \t1_new: \1__pdffield_caption_tl

\l__pdffield down_caption t1, \t] new:N \1__pdffield_rollover_caption_tl

\1__pdffield_down_caption_tl
\1__pdffield CO_sortkey_stris \prop_new:N \g__pdffield_CO_sortkeys_prop
\g_ pdffield annot ref last tliz \seq_new:N \g__pdffield_CO_sortkeys_seq
\1__pdffield_tag_boolis \str_new:N \1__pdffield_CO_sortkey_str
19 \tl_new:N \g__pdffield_annot_ref_last_tl
20 \bool_new:N \1__pdffield_tag_bool
21 \bool_set_true:N \1__pdffield_tag_bool

=Z=2==2==2=222

\g__pdffield CO_sortkeys_props \tl_new:

(End of definition for \1__pdffield_tmpa_str and others.)
2 \cs_new_protected:Npn __pdffield_tmpa:n #1 {}
23 \cs_new_protected:Npn __pdffield_tmpa:nn #1 #2 {}

7.3 messages

2 \msg_new:nnn {pdffield}{no-period}

25 {

2 The~field~name~'#1'~contains~a~period. \\

27 This~is~not~allowed.

28 }

20 \msg_new:nnn {pdffield}{empty-name}

30 {

31 The~field~name~is~empty. \\

32 This~is~not~allowed.

33 }

s \msg_new:nnn {pdffield}{appearance-missing}

s {

36 The~appearance~definition~'#1'~is~missing~for~the~#2~appearance.
37 }

33 \msg_new:nnn {pdffield}{not-implemented}

39 '{

40 Support~for~'/#1'~is~not~implemented\\

41 The~key~is~ignored.

42 }

s \msg_new:nnn {pdffield}{key-disabled}

44 {

45 key~'#2'~is~disabled~and~ignored~in~the~'#1'~command.\\
46 Use~key~'#3'~instead.

47 }

sz \msg_new:nnn {pdffield}{parent-field-missing}

49 {

50 The~parent~field~'#1'~doesn't~exist\\

51 Create~it~with~\tl_to_str:n{\pdffield_field:nn}

13

52 }
53 \msg_new:nnn {pdffield}{key-ignored}

54 {
55 key~'#1'~has~no~function~and~is~ignored
56 }

An auxiliary command to disable some keys
__pdffield_key_disable:nnn

57 \cs_new_protected:Npn __pdffield_key_disable:nnn #1#2#3

55 {

59 \keys_define:nn {pdffield}

60 {

61 #2 .code:n =

62 {

63 \msg_warning:nnnnn {pdffield}{key-disabled}{#1}{#2}{#3}
64 }

65 }

66

(End of definition for __pdffield_key_disable:nnn.)

7.4 Dbitsets

\1__pdffield Ff bitset The field and the annot bitset.
\1__pdffield_F_bitset
o7 \bitset_new:Nn \1__pdffield_Ff_bitset

s {

69 ReadOnly =1,

70 Required =2,

71 NoExport =3,

72 Multiline = 13,%Tx

73 Password = 14,

74 NoToggleToOff = 15,%Btn, radio button

75 Radio = 16,%Btn: Radio: 16=1, 17=0
76 Pushbutton = 17,%Btn: Checkbox: 16=0, 17=0

7 %Btn: Pushbutton: 17=1

78 Combo = 18,%Ch: Combo=1 List=0

79 Edit = 19,%Ch, Combo=1 -> + edit field
80 Sort = 20,%Ch, not relevant for view...
81 FileSelect = 21,%Tx

82 MultiSelect = 22,%Ch

83 DoNotSpellCheck = 23,%Tx, Ch (if Combo + Edit set)
84 DoNotScroll = 24,%Tx

85 Comb = 25,%Tx, requires MaxLen in dict
86 RadiosInUnison = 26,%Btn Radio

87 RichText = 26,%Tx

88 CommitOnSelChange = 27,

89 readonly =1,

9 required = 2,

91 noexport = 3,

92 multiline = 13,%Tx

03 password = 14,

94 notoggletooff = 15,%Btn, radio button

95 radio = 16,%Btn: Radio: 15=1, 16=0

14

9% pushbutton = 17,%Btn: Checkbox: 15=0, 16=0

97 %Btn: Pushbutton: 16=1

98 combo = 18,%Ch: Combo=1 List=0

99 edit = 19,%Ch, Combo=1 -> + edit field
100 sort = 20,%Ch, not relevant for view...
101 fileselect = 21,%Tx

102 multiselect = 22,%Ch

103 donotspellcheck = 23,%Tx, Ch (if Combo + Edit set)
104 donotscroll = 24 ,%Tx

105 comb = 25,%Tx, requires MaxLen in dict
106 radiosinunison = 26,%Btn Radio

107 richtext = 26,%Tx

108 commitonselchange = 27

109 }

110

111 \bitset_new:Nn \1__pdffield_F_bitset

112 {

113 Invisible =1,

114 Hidden = 2,

115 Print = 3,

116 NoZoom =4,

117 NoRotate =5,

118 NoView =6,

119 ReadOnly =7,

120 Locked =8,

121 ToggleNoView = 9,

122 LockedContents = 10,

123 invisible =1,

124 hidden = 2,

125 print = 3,

126 nozoom =4,

127 norotate 5,

128 noview =6,

129 readonly =7,

130 locked = 8,

131 togglenoview =9,

132 lockedcontents = 10

133 }

(End of definition for \1__pdffield_Ff_bitset and \1__pdffield_F_bitset.)

7.5 The field dictionary

The field dictionary is the main object. To be able to set values from the outside it will
use a dictionary which can be filled by key-val.

132 \pdfdict_new:n {1__pdffield/field}
135 \pdfdict_new:n {1__pdffield/field/AA}

__pdffield_field:n
\pdffield_field:nn

__pdffield_field:n{(field ID)}

15

136

160

161

162

163

164

166

167

187

188

189

\cs_new_protected:Npn __pdffield_field:n #1

{

\pdf_object_new:n {__pdffield/field/#1}
\pdf_object_new:n {__pdffield/field/Kids/#1}
\tl_if_empty:NTF \1__pdffield_currentparent_tl
{
\pdfmanagement_add:nne
{ Catalog / AcroForm }
{ Fields }
{\pdf_object_ref:n {__pdffield/field/#1} }
}
{
\exp_args:Ne
\pdf_object_if_exist:nTF {__pdffield/field/\1__pdffield_currentparent_tl}
{
\pdfdict_put:nne { 1__pdffield/field }{Parent}
{\exp_args:Ne \pdf_object_ref:n{__pdffield/field/\1__pdffield_currentparent_tl}}
\seq_gput_right:ce {g__pdffield_field/Kids/\1__pdffield_currentparent_tl _seq}
{ \exp_args:Ne \pdf_object_ref:n{__pdffield/field/#1}}
}
{
\msg_error:nne {pdffield}{parent-field-missing}{\1__pdffield_currentparent_tl}
}
}
\seq_new:c {g__pdffield_field/Kids/#1_seq}
\pdfdict_put:nne {1__pdffield/field}

{Kids}
{
\pdf_object_ref:n {__pdffield/field/Kids/#1}
}
\pdfdict_put:nne {1__pdffield/field}
{F£f}

{\bitset_to_arabic:N \1__pdffield_Ff_bitset }
\pdfdict_if_empty:nF{1__pdffield/field/AA}
{
\pdfmeta_standard_verify:nT
{annot_widget_no_AA}
{
\pdf_object_unnamed_write:ne {dict}{\pdfdict_use:n {1__pdffield/field/AA}}
\pdfdict_put:nne
{1__pdffield/field}
{AA}
{\pdf_object_ref_last:}
\pdfdict_get:nnN {1__pdffield/field/AA}{C}\1__pdffield_tmpa_tl
\quark_if_no_value:NF \1__pdffield_tmpa_tl
{
\prop_gput :Nee\g__pdffield_CO_sortkeys_prop
{ \pdf_object_ref:n {__pdffield/field/#1} }{ \1__pdffield_CO_sortkey_str }
\seq_gput_right:Ne\g__pdffield_CO_sortkeys_seq
{ \pdf_object_ref:n {__pdffield/field/#1} }

}

}
\hook_gput_code:nnn {shipout/lastpage}{pdffield} ’xetex needs this ...

16

190 {
101 \pdf_object_write:nne {__pdffield/field/Kids/#1} { array }

192 {

193 \seq_use:cn{g__pdffield_field/Kids/#1_seq}{~}
194 }

105 }

196 \pdf_object_write:nne {__pdffield/field/#1} { dict } { \pdfdict_use:n {1__pdffield/field} }
197 }

198

190 \hook_gput_code:nnn {shipout/lastpage}{pdffield}

200 {

201 \prop_if_empty:NF \g__pdffield_CO_sortkeys_prop

202 {

203 \seq_gsort:Nn \g__pdffield_CO_sortkeys_seq

204 {

205 \str_compare:eNeTF

206 { \prop_item:Nn \g__pdffield_CO_sortkeys_prop {#1} }
207 >

208 { \prop_item:Nn \g__pdffield_CO_sortkeys_prop {#2} }
209 { \sort_return_swapped: }

210 { \sort_return_same: }

211 3

212 \pdfmanagement_add:nne

213 { Catalog / AcroForm }

214 { CO }

215 { \seq_use:Nn \g__pdffield_CO_sortkeys_seq{~} }
216 }

217 3

218

219 \cs_new_protected:Npn \pdffield_field:nn #1 #2

220 {

21 \group_begin:

222 \keys_set:nn { pdffield } {#1}

223 __pdffield_field:n {#2}

224 \group_end:

225 }

(End of definition for __pdffield_field:n and \pdffield_field:nn. This function is documented on
page 4.)

7.6 The annot dictionary

We assume that the annotation should really occupy space on the page and leave vertical
mode.

__pdffield_annot: The command doesn’t add grouping, so should only be used inside a group.
\pdffield_annot:n
26 \cs_new_protected:Npn __pdffield_annot:

227 {

228 \pdfmeta_standard_verify:nF

229 {annot_flags}

230 {

231 \bitset_set_true:Nn \1__pdffield_F_bitset {Print}
232 \bitset_set_false:Nn \1__pdffield_F_bitset {Hidden}

17

233 \bitset_set_false:Nn \1__pdffield_F_bitset {Invisible}
234 \bitset_set_false:Nn \1__pdffield F_bitset {NoView}

235 }

236 \pdfannot_dict_put:nne {widget}{F}{ \bitset_to_arabic:N \1__pdffield_F_bitset }
237 __pdffield_tag_add_struct_parent:

238 \tl_if_empty:NF \1__pdffield_currentparent_tl

239 {

240 \exp_args:Ne

241 \pdf_object_if_exist:nTF { __pdffield/field/\1__pdffield_currentparent_tl }
242 {

243 \pdfannot_dict_put:nne {widget}{Parent}

244 {

245 \exp_args:Ne

246 \pdf_object_ref:n{__pdffield/field/\1__pdffield_currentparent_tl}
247 }

248 }

249 {

250 \msg_error:nne { pdffield }{parent-field-missing}{\1__pdffield_currentparent_tl}
251 }

252 }

253 \mode_leave_vertical:

254 __pdffield_tag_struct_begin:

255 \hbox_to_wd:nn

256 { \1__pdffield_annot_wd_dim }

257 {

258 \rule [-\1__pdffield_annot_dp_dim]{Opt}{\dim_eval:n{\1__pdffield_annot_ht_dim+\1l__pdffie
259 \pdfannot_widget_box:nnn

260 { \1__pdffield_annot_wd_dim }

261 { \1__pdffield_annot_ht_dim }

262 { \1__pdffield_annot_dp_dim }

263 \hfill

264 }

265 \tl_gset:Ne \g__pdffield_annot_ref_last_tl { \pdfannot_box_ref_last: }

266 \exp_args:NV __pdffield_tag_add_objr:n \g__pdffield_annot_ref_last_tl

267 __pdffield_tag_struct_end:

268 \tl_if_empty:NF \1__pdffield_currentparent_tl

269 {

270 \seq_if_exist:cTF {g__pdffield_field/Kids/\1__pdffield_currentparent_tl _seq}
271 {

272 \seq_gput_right:ce

273 {g__pdffield_field/Kids/\1__pdffield_currentparent_tl _seq}

274 { \g__pdffield_annot_ref_last_tl }

275 }

276 {

277 \msg_error:nne { pdffield}{parent-field-missing}{\1__pdffield_currentparent_tl}
278 ¥

279 }

280 }

251 \cs_new_protected:Npn \pdffield_annot:n #1
282 {

283 \group_begin:

284 \keys_set:nn { pdffield } {#1}

285 __pdffield_annot:

286 \group_end:

18

N
*
N
(-

(End of definition for __pdffield_annot: and \pdffield_annot:n. This function is documented on
page 4.)

\pdffield_annot_ref_last:
s \cs_new:Npn \pdffield_annot_ref_last: { \g__pdffield_annot_ref_last_tl }

(End of definition for \pdffield_annot_ref_last:. This function is documented on page 5.)

7.7 Tagging

__pdffield tag add struct parent:
__pdffield_tag_add_objr:n
struct_begin: __pdffield tag struct_endzso \cs_new_protected:Npn __pdffield_tag_add_struct_parent: {}
20 \cs_new_protected:Npn __pdffield_tag_add_objr:n #1 {3}
201 \cs_new_protected:Npn __pdffield_tag_struct_begin: {}
202 \cs_new_protected:Npn __pdffield_tag_struct_end: {}
; \hook_gput_code:nnn {begindocument} { 13pdffield }

2!

©

204 {

205 \cs_if_exist:NT \tag_if_active:T

206 {

207 \tag_if_active:T

2908 {

200 \cs_set_protected:Npn __pdffield_tag_add_struct_parent:
300 {

301 \bool_if:NT \1__pdffield_tag_bool

302 {

303 \pdfannot_dict_put:nne {widget}{StructParent}{ \tag_struct_parent_int: }
304 }

305 }

306 \cs_set_protected:Npn __pdffield_tag_add_objr:n #1
307 {

308 \bool_if:NT \1__pdffield_tag_bool

309 {

310 \exp_args:Nne

311 \tag_struct_insert_annot:nn {#1}{ \tag_struct_parent_int: }
312 }

313 }

314 \cs_set_protected:Npn __pdffield_tag_struct_begin:
315 {

316 \bool_if:NT \1__pdffield_tag_bool

317 {

318 \tag_mc_end_push:

319 \tag_struct_begin:n{tag=Form}

320 ¥

321 }

322 \cs_set_protected:Npn __pdffield_tag_struct_end:
323 {

32 \bool_if:NT \1__pdffield_tag_bool

325 {

326 \tag_struct_end:

327 \tag_mc_begin_pop:n{}

19

__pdffield_color_set:nn

__pdffield_V_handler:nN

parent
T

names3

TG

altnamé”

TMSO
mappingname

(End of definition for __pdffield_tag_add_struct_parent:, __pdffield_tag_add_objr:n, and __-
pdffield_tag_struct_begin: __pdffield_tag_struct_end:.)

7.8 auxiliary command for color keys

\cs_new_protected:Npn __pdffield_color_set:nn #1 #2

{
\tl_if_head_eq_charcode:nNTF {#2}[%]
{
__pdffield_color_set_aux:nwn { #1 } #2
}
{
\color_set:nn {#1} {#2}
}
}

\cs_new_protected:Npn __pdffield_color_set_aux:nwn #1 [#2] #3

{
\color_set:nnn {#1}{#2}{#3}
}

(End of definition for __pdffield_color_set:nn.)

7.9 Field keys

The names. The main name should not be empty, it is added to the dictionary when the
field is created. A new name means a new field. The other names can only be set when
the field is created, so we put them in the field group.

Values (V and DV) need different handling in the various field types. So it uses a handler
which can be redefined locally. By default it simply stores the value in a tl var.

\cs_new_protected:Npn __pdffield_V_handler:nN #1#2
{
\tl_set:Nn #2 {#1}
¥

(End of definition for __pdffield_V_handler:nN.)

\keys_define:nn { pdffield }
{
,parent .tl_set:N = \1__pdffield_currentparent_tl
,parent .groups:n = {field,annot}

20

357 ,T .code:n =

358 {

350 \pdf_string_from_unicode:nnN {utf8/string-raw}{#1}\1__pdffield_tmpa_str
360 \str_if_in:NnT \1__pdffield_tmpa_str {.}

361 {

362 \msg_error:nne {pdffield}{no-period}{\1__pdffield_tmpa_str}

363 }

364 \str_if_empty:NTF\1l__pdffield_tmpa_str

365 {

366 \msg_warning:nn {pdffield}{empty-name}

367 \pdfdict_remove:nn { 1__pdffield/field }{T}

368 }

369 {

370 \pdfdict_put:nne { 1__pdffield/field T} (\1__pdffield_tmpa_str)}
371 }

372 }

373 ,T .value_required:n = true

374 ,T .groups:n = {field}

375 ,name .meta:n = {T={#1}}

376 ,name .value_required:n = true

377 ,name .groups:n = {field}

378 ,TU .groups:n = {field}

379 ,TU .code:n =

380 {

381 \tl_if_empty:nTF {#1}

382 {

383 \pdfdict_remove:nn { 1__pdffield/field }{TU}

384 }

385 {

386 \pdf_string_from_unicode:nnN {utf16/hex}{#1}\1__pdffield_tmpa_str
387 \pdfdict_put:nne { 1__pdffield/field }{TU}{\1l__pdffield_tmpa_str}
388 }

389 }

390 ,TU .groups:n = {field}

301 ,altname .meta:n = {TU={#1}}

302 ,altname .groups:n = {field}

303 ,IM .code:n =

394 {

395 \tl_if_empty:nTF {#1}

396 {

397 \pdfdict_remove:nn { 1__pdffield/field }{TM}

398 }

399 {

400 \pdf_string_from_unicode:nnN {utf16/hex}{#1}\1__pdffield_tmpa_str
401 \pdfdict_put:nne { 1__pdffield/field }{TM}{\1l__pdffield_tmpa_str}
402 }

403 }

404 ,TM .groups:n = {field}

405 ,mappingname .meta:n = {TM={#1}}

406 ,mappingname .groups:n = {field}

407 }

(End of definition for parent and others. These functions are documented on page 10.)

fieldID For some field types we need a fieldID.

21

208 \keys_define:nn { pdffield }

409 {
a0 fieldID .tl_set:N = \1__pdffield_fieldID_tl
41}

(End of definition for fieldID. This function is documented on page 9.)

FT
v

DVi2 \keys_define:nn{pdffield}

MaxLeri!® {
Lock! ,FT .choices:nn =

Sy { Btn, Tx, Ch, Sig }

Op‘é] 6 {

iy \pdfdict_put:nnn { 1__pdffield/field MFT}{ /#1 }
418 }
Lo ,FT .groups:n = {field}
420 ,V .code:n =
421 {
422 \tl_if_empty:nTF {#1}
423 {
424 \pdfdict_remove:nn { 1__pdffield/field }{V}
425 T
426 {
427 __pdffield_V_handler:nN{#1}\1__pdffield_tmpa_str
428 \pdfdict_put:nne { 1__pdffield/field }{V}{ \1__pdffield_tmpa_str }
429 }
430 }
431 ,V .groups:n = {field}
432 ,DV .code:n =
433 {
a3 \tl_if_empty:nTF {#1}
435 {
436 \pdfdict_remove:nn { 1__pdffield/field }{DV}
437 ¥
438 {
439 __pdffield_V_handler:nN{#1}\1__pdffield_tmpa_str
440 \pdfdict_put:nne { 1__pdffield/field }{DV}{ \1__pdffield_tmpa_str }
441 }
442 3
443 ,DV .groups:n = {field}
444 ,MaxLen .code:n =
445 {
446 \tl_if_empty:nTF {#1}
447 {
448 \pdfdict_remove:nn { 1__pdffield/field }{MaxLen}
449 T
450 {
451 \pdfdict_put:nne { 1__pdffield/field }{MaxLen}{ #1 }
452 T
453 }
454 ,MaxLen .groups:n = {field}
455 ,Lock .code:n =
456 {

22

457 \tl_if_empty:nTF {#1}

458 {

450 \pdfdict_remove:nn { 1__pdffield/field }{Lock}
460 }

461 {

462 \pdfdict_put:nne { 1__pdffield/field }{Lock}{ \pdf_object_ref:n{#1} }
463 3

464 }

465 ,Lock .groups:n = {field}

466 ,SV .code:n =

467 {

468 \tl_if_empty:nTF {#1}

469 {

470 \pdfdict_remove:nn { 1__pdffield/field }{SV}
471 }

472 {

a73 \pdfdict_put:nne { 1__pdffield/field }{SV}{ \pdf_object_ref:n{#1} }
474 }

475 ¥

476 ,S8V .groups:n = {field}

477 ,0pt .code:n =

478 {

479 \tl_if_empty:nTF {#1}

480 {

481 \pdfdict_remove:nn { 1__pdffield/field }{Opt}
482 }

483 {

484 \pdfdict_put:nne { 1__pdffield/field }{Opt}{ \pdf_object_ref:n{#1} }
485 }

486 }

487 ,0pt .groups:n = {field}

488 ,TI .code:n =

489 {

490 \tl_if_empty:nTF {#1}

491 {

492 \pdfdict_remove:nn { 1__pdffield/field }{TI}
493 }

494 {

205 \pdfdict_put:nne { 1__pdffield/field }{TI}{ #1 }
496 }

497 }

498 ,TI .groups:n = {field}

499 ,I .code:n =

500 {

501 \tl_if_empty:nTF {#1}

502 {

503 \pdfdict_remove:nn { 1__pdffield/field }{I}

504 }

505 {

506 \pdfdict_put:nne { 1__pdffield/field }{I}{ \pdf_object_ref:n{#1} }
507 }

508 3

509 ,I .groups:n = {field}

510 }

23

(End of definition for FT and others. These functions are documented on page 7.)

Flags. We don’t add lots of individual keys but map the key names directly

setFf
setfieldflags
unsetFfi \keys_define:nn { pdffield }
unsetfieldflags? 1

513 ,setFf .code:n =

514 {

515 \clist_map_inline:nn {#1}

516 {

517 \bitset_set_true:Nn \1__pdffield_Ff_bitset {##1}
518 }

519 }

520 ,setFf .groups:n = {field}

521 ,setfieldflags .meta:n =

522 {setFf={#1}}

523 ,setfieldflags .groups:n = {field}

524 ,unsetFf .multichoice:

525 ,unsetFf / all .code:n = { \bitset_clear:N \1__pdffield_Ff_bitset}
526 ,unsetFf / unknown .code:n =

527 {

528 \bitset_set_false:Nn \1__pdffield_Ff_bitset {#1}
529 }

530 ,unsetFf .groups:n = {field}

531 ,unsetfieldflags .meta:n = {unsetFf={#1}}

532 ,unsetfieldflags .groups:n = {field}

533 }

(End of definition for setFf and others. These functions are documented on page 7.)

Ar/K Keys for the AA dictionary. They all trigger a javascript option. K=keystroke, F=format,
keystroke V=validate, C=calculate

AA/F
formatss \cs_set_protected:Npn __pdffield_tmpa:n #1 7
JVVAZ IRt
validaté? \keys_define:nn { pdffield }
AA/C* t
calculats® AA/#1 .code:n =
540 {
541 \tl_if_empty:nTF {#1}
542 {
543 \pdfdict_remove:nn {1__pdffield/field/AA}{#1}
544 ¥
545 {
546 \pdfdict_put:nne {1__pdffield/field/AA}
547 {#1}
548 {<</8/JavaScript/JS\c_space_tl ##1>>}
549 }
550 } ’
551 AA/#1 .groups:n = {field}
552 }

24

553 }

555 \clist_map_inline:nn {K,F,V,C}H__pdffield_tmpa:n{#1}}
556

ss7 \cs_set_protected:Npn __pdffield_tmpa:nn #1 #2

558 {

559 \keys_define:nn { pdffield }

560 {

561 #1 .meta:nn =

562 { pdffield }{AA/#2={##1}},
563 #1 .groups:n = {field}

564 T

565 }

se6 __pdffield_tmpa:nn {keystroke}{K}
se7 __pdffield_tmpa:nn {format} {F}
ses __pdffield_tmpa:nn {validate} {V}
se0 __pdffield_tmpa:nn {calculate}{C}
570

s71 \keys_define:nn {pdffield}

572 {
573 sortkey .code:n = {\str_set:Ne \1__pdffield_CO_sortkey_str {\tl_to_str:n{#1}}}
574}

(End of definition for AA/K and others. These functions are documented on page 9.)

DA The following keys are related to textfield and their format.

Q
alignn \keys_define:nn { pdffield }
pse 1
RV’ DA .code:n =
578 {
579 \tl_if_empty:nTF {#1}
580 {
581 \pdfdict_remove:nn { 1__pdffield/field }{DA}
582 }
583 {
564 \pdfdict_put:nne { 1__pdffield/field }{DA}{ (#1) }
585 }
586 }
587 ,DA .groups:n = {field}
588 ,Q .choices:nn = {left,center,right}
589 {
500 \pdfdict_put:nne { 1__pdffield/field }{Q}{ \int_eval:n{\1_keys_choice_int-1} }
591 }
502 ,Q / .code:n = { \pdfdict_remove:nn { 1__pdffield/field }{Q} }
593 ,Q .groups:n = {field}
504 ,align .meta:n={Q=#1}
595 ,DS .code:n =
596 {
597 \msg_warning:nnn {pdffield}{not-implemented}{DS}
598 }
599 ,DS .groups:n = {field}
600 ,RV .code:n =
601 {

25

602 \msg_warning:nnn {pdffield}{not-implemented}{RV}
603 }

604 ,RV .groups:n = {field}

605 }

(End of definition for DA and others. These functions are documented on page 9.)

7.10 Annotation keys
The size of the field annotation

\1__pdffield_annot_ht_dim

\1__pdffield_annot_wd_dim

\1__pdffield_annot_dp_dims \dim_new:N \1__pdffield annot_ht_dim
607 \dim_new:N \1__pdffield_annot_wd_dim
608 \dim_new:N \1__pdffield_annot_dp_dim

(End of definition for \1__pdffield_annot_ht_dim, \1__pdffield_annot_wd_dim, and \1__pdffield_-
annot_dp_dim.)

width The size of the field annotation.

height

deptho \keys_define:nn { pdffield }
610 {
611 ,width .dim_set:N = \1__pdffield_annot_wd_dim
612 ,height .dim_set:N = \1__pdffield_annot_ht_dim
613 ,depth .dim_set:N = \1__pdffield_annot_dp_dim
614 ,width .initial:n = Opt
615 ,height .initial:n = Opt
616 ,depth .initial:n = Opt
617 }

(End of definition for width, height, and depth. These functions are documented on page 10.)
tag to disable tagging locally

615 \keys_define:nn { pdffield }

619 {

620 ,tag .bool_set:N = \1__pdffield_tag_bool
621 }

(End of definition for tag. This function is documented on page 10.)

\ pdffield appearance handler:nn Appearances have to be handled in various ways, so we use a handler, that the field types
can redefine if needed.

¢> \cs_new_protected:Npn __pdffield_appearance_handler:nnn #1#2#3

623 {

624 \pdfxform_if_exist:nTF { #1 }

625 {

626 \pdfannot_dict_put:nne {widget/AP}{#2}
627 {

628 \pdfxform_ref:n {#1}

629 }

630 }

26

632 \msg_error:nnnn{pdffield}{appearance-missing}{#1}{#3}
633 }

(End of definition for __pdffield_appearance_handler:nnn.)

AS The key for the default appearance and the various types.

AP/N
appearances \keys_define:nn { pdffield }
AP/R% {

rollover-appearancd’’ %parent is defined in field
AP/B* ,AS .code:n =

639 {
down-appearance \t1_if_empty:nTF {#1}
641 {
642 \pdfannot_dict_remove:nn { widget }{AS}
643 }
644 {
645 \pdfannot_dict_put:nne {widget}{AS}{\pdf_name_from_unicode_e:n{#1}}
646 }
647 }
648 ,AS .groups:n = annot
620 F
050 \keys_define:nn { pdffield }
651 {
652 AP/N .code:n =
653 {
654 \tl_if_empty:nTF {#1}
655 {
656 \pdfannot_dict_remove:nn { widget/AP }{N}
657 }
658 {
659 __pdffield_appearance_handler:nnn {#1}{N}{normall}
660 }
661 }
662 ,AP/N .groups:n = annot
663 ,appearance .meta:n = {AP/N={#1}}
664 ,appearance .groups:n = annot
665 }
o6 \keys_define:nn { pdffield }
667 {
668 AP/R .code:n =
669 {
670 \tl_if_empty:nTF {#1}
671 {
672 \pdfannot_dict_remove:nn { widget/AP }{R}
673 }
674 {
675 __pdffield_appearance_handler:nnn {#1}{R}{rollover}
676 }
677 }
678 ,AP/R .groups:n = annot
679 ,rollover-appearance .meta:n = {AP/R={#1}}

27

680 ,rollover-appearance .groups:n = annot

681 }

62 \keys_define:nn { pdffield }

683 {

684 AP/D .code:n =

685 {

686 \tl_if_empty:nTF {#1}

687 {

688 \pdfannot_dict_remove:nn { widget/AP }{D}
689 }

690 {

691 __pdffield_appearance_handler:nnn {#1}{D}{down}
692 }

693 }

694 ,AP/D .groups:n = annot

695 ,down-appearance .meta:n = {AP/D={#1}}

696 ,down-appearance .groups:n = annot

697 }

(End of definition for AS and others. These functions are documented on page 11.)

MK/R This are the keys for the dynamic appearance. A number are not handled yet fully.
rotate
MK/BG»: \keys_define:nn { pdffield }
bordercolo¥®” {

MK /BG™ MK/R .choices:nn = {0,90,180,270}
backgroundcolor” {
702 \pdfannot_dict_put:nne {widget/MK}{R}{#1}
MK/CA
. 703 }
captlogw ,MK/R / .code:n =
705 {
706 \pdfannot_dict_remove:nn { widget/MK }{R}
707 }
708 ,MK/R .groups:n = annot
700 ,rotate .meta:n = {MK/R=#1}
710 }
711
712 \keys_define:nn { pdffield }
713 {
714 MK/BC .code:n =
715 {
716 \tl_if_empty:nTF {#1}
717 {
718 \pdfannot_dict_remove:nn { widget/MK }{BC}
719 }
720 {
721 __pdffield_color_set:nn {__pdffield/tmp}{#1}
722 \color_export:nnN{__pdffield/tmp}{space-sep-rgb}\1__pdffield_tmpa_tl
723 \pdfannot_dict_put:nne {widget/MK}{BC}{[\1__pdffield_tmpa_t1]}
724 }
725 }
726 ,MK/BC .groups:n = annot
727 ,bordercolor .meta:n = {MK/BC=#1}
728 }

28

\keys_define:nn { pdffield }
{
MK/BG .code:n =
{
\tl_if_empty:nTF {#1}
{
\pdfannot_dict_remove:nn { widget/MK }{BG}
}
{
__pdffield_color_set:nn {__pdffield/tmp}{#1}
\color_export:nnN{__pdffield/tmp}{space-sep-rgb}\1__pdffield_tmpa_tl
\pdfannot_dict_put:nne {widget/MK}{BG}{[\1__pdffield_tmpa_t1l]}
}
}
,MK/BG .groups:n = annot
,backgroundcolor .meta:n = {MK/BG=#1}
}

\keys_define:nn { pdffield }
{
MK/CA .code:n =
{
\tl_set:Nn \1__pdffield_caption_tl {#1}
\tl_if_empty:nTF {#1}
{
\pdfannot_dict_remove:nn { widget/MK }{CA}
}
{
\pdf_string_from_unicode:nnN {utf8/string}{#1}\1__pdffield_tmpa_str
\pdfannot_dict_put:nne {widget/MK}{CA}{\1__pdffield_tmpa_str}
}
}
,MK/CA .groups:n = annot
,caption .meta:n = {MK/CA=#1}
}

 \keys_define:nn { pdffield 1}

{
MK/RC .code:n =
{
\tl_set:Nn \1__pdffield_rollover_caption_tl {#1}
\tl_if_empty:nTF {#1}
{
\pdfannot_dict_remove:nn { widget/MK }{RC}
}
{
\pdf_string_from_unicode:nnN {utf8/string}{#1}\1__pdffield_tmpa_str
\pdfannot_dict_put:nne {widget/MK}{RC}{\1__pdffield_tmpa_str}
}
}
,MK/RC .groups:n = annot
,rollover-caption .meta:n = {MK/RC=#1}

29

783 }

755 \keys_define:nn { pdffield 1}

786 {

787 MK/AC .code:n =

788 {

789 \tl_set:Nn \1__pdffield_down_caption_tl {#1}

790 \tl_if_empty:nTF {#1}

791 {

792 \pdfannot_dict_remove:nn { widget/MK }{AC}

793 }

794 {

795 \pdf_string_from_unicode:nnN {utf8/string}{#1}\1__pdffield_tmpa_str
796 \pdfannot_dict_put:nne {widget/MK}{AC}{\1__pdffield_tmpa_str}
797 }

798 }

799 ,MK/AC .groups:n = annot

800 ,down-caption .meta:n = {MK/AC=#1}

801 }

(End of definition for MK/R and others. These functions are documented on page 11.)

MK/I The following keys are pushputtons only. Currently there is no special handling involved
MK/RI as it is unclear if they are useful.

MK/IX
MK/IE» \cs_set_protected:Npn __pdffield_tmpa:n #1
MK/TP: 1
804 \keys_define:nn { pdffield }
805 {
806 MK/#1 .code:n =
807 {
808 \tl_if_empty:nTF {##1}
809 {
810 \pdfannot_dict_remove:nn { widget/MK }{#1}
811 }
812 {
813 \pdfannot_dict_put:nne {widget/MK}{#1}{##1}
814 }
815 }
816 ,MK/#1 .groups:n = annot
817 }
818 }

&0 \clist_map_inline:nn {I,RI,IX,IF,TP}
g1 { __pdffield_tmpa:n {#1} }

(End of definition for MK/I and others. These functions are documented on page 12.)

Flags.

setF
setannotflags
unsetF2 \keys_define:nn { pdffield }

unsetannotflags> {

30

AA/*

AA/Fo
onfocus*’
AA/BI*
onblur”
AA/fébU
onmousedowéz
AM/Y
onmouseup,,
AA/Es
onentexss
AA/Xs7
onexitss
AA/PE*
pageopen”
Ap/PC”
pageclosé?
AB/PV
pagevisiblgm
1;1\//13 LGG
pageinvisible,,
868

869

,setF .code:n =

{
\clist_map_inline:nn {#1}
{
\bitset_set_true:Nn \1__pdffield_F_bitset {##1}
}
}

,setF .groups:n = annot
,setannotflags .meta:nn =
{ pdffield }{setF={#1}}
,setannotflags .groups:n = annot
,unsetF .multichoice:
,unsetF / all .code:n = { \bitset_clear:N \1__pdffield_F_bitset}
,unsetF / unknown .code:n =
{
\bitset_set_false:Nn \1__pdffield_F_bitset {#1}
}
,unsetF .groups:n = annot
,unsetannotflags .meta:nn =
{ pdffield }{unsetF= {#1} }
,unsetannotflags .groups:n = annot

(End of definition for setF and others. These functions are documented on page 11.)

Keys for the AA dictionary. They all trigger a javascript option. Fo = onfocus, Bl =
onblur, D = onmousedown, U = onmouseup, E = onenter, X = onexit, PO = pageopen,
PC = pageclose, PV = pagevisible, PI = pageinvisible

\cs_set_protected:Npn __pdffield_tmpa:n #1 ¥
{
\keys_define:nn { pdffield }
{
AA/#1 .code:n =
{
\tl_if_empty:nTF {#1}
{
\pdfannot_dict_remove:nn {widget/AA}{#1}
}
{
\pdfannot_dict_put:nne {widget/AA}
{#1}
{<</8/JavaScript/JS\c_space_t1l##1>>}
}
1},
,AA/#1 .groups:n = annot

}
\clist_map_inline:nn {Fo,B1l,D,U,E,X,P0,PC,PV,PI}{__pdffield_tmpa:n{#1}}

\cs_set_protected:Npn __pdffield_tmpa:nn #1 #2

31

871 \keys_define:nn { pdffield }

872 {

873 #1 .meta:nn =

874 { pdffield }{AA/#2={##1}},
875 #1 .groups:n = {annot}

876 T

877 }

{onenter} {E}
{onexit} {X}

s __pdffield_tmpa:
e __pdffield_tmpa:

e7s __pdffield_tmpa:nn {onfocus} {Fo}
g9 __pdffield_tmpa:nn {onblur} {B1}
g0 __pdffield_tmpa:nn {onmousedown}{D}
gs1 __pdffield_tmpa:nn {onmouseup}{U}
nn
nn

(End of definition for AA/* and others. These functions are documented on page 11.)

7.11 Appearances

\pdffield_appearance:nn
\pdffield_store_appearance:nn
s34 \cs_new_protected:Npn \pdffield_appearance:nn #1 #2
885 {
886 \pdfxform_new:nnn {#1}{}{#2}
887 }
888

ss0 \cs_set_eq:NN \pdffield_store_appearance:nn\pdffield_appearance:nn

(End of definition for \pdffield_appearance:nn and \pdffield_store_appearance:nn. These functions
are documented on page 5.)

7.12 Setup command

create-style
preset-checkbox

preset-radiew \keys_define:nn { pdffield / setup }
preset-textfield {

802 ,create-style .code:n = { __pdffield_style_create:nn #1 }
893 ,preset-checkbox .code:n =

894 {

895 \keys_define:nn { pdffield }

896 {

897 __pdffield/preset/checkbox .meta:n = {#1},

898 }

899 }

900 ,preset-radiobutton .code:n =

901 {

902 \keys_define:nn { pdffield }

903 {

904 __pdffield/preset/radiobutton .meta:n = {#1},
905 }

906 }

907 ,preset-textfield .code:n =

908 {

32

909 \keys_define:nn { pdffield }

910 {

011 __pdffield/preset/textfield .meta:n = {#1},
912 }

913 }

914 ,preset-pushbutton .code:n =

915 {

916 \keys_define:nn { pdffield }

917 {

018 __pdffield/preset/pushbutton .meta:n = {#1},
919 }

920 }

921 ,preset-choice .code:n =

922 {

923 \keys_define:nn { pdffield }

924 {

925 __pdffield/preset/choice .meta:n = {#1},

926 }

027 }

928 }

020 \keys_set:nn{ pdffield / setup }{preset-checkbox={1}}

030 \keys_set:nn{ pdffield / setup }{preset-textfield={}}
031 \keys_set:nn{ pdffield / setup }{preset-radiobutton={}}
022 \keys_set:nn{ pdffield / setup }{preset-pushbutton={}}
033 \keys_set:nn{ pdffield / setup }{preset-choice={1}}

(End of definition for create-style and others. These functions are documented on page 5.)

__pdffield_style_create:nn

032 \cs_new_protected:Npn __pdffield_style_create:nn #1#2

935 {

936 \keys_define:nn { pdffield }

0937 {

038 __pdffield/style/#1 .meta:n = {#2},
939 }

940 }

941
(End of definition for __pdffield_style_create:nn.)

\pdffield_setup:n

style
o> \cs_new_protected:Npn \pdffield_setup:n #1
943 {
944 \keys_set:nn{ pdffield / setup I#1}
945 }
946
o7 \keys_define:nn { pdffield }
948 {
949 style .code:n = {\keys_set:nn {pdffield}{__pdffield/style/#1={#1}}}
950 }

(End of definition for \pdffield_setup:n and style. These functions are documented on page 5.)

33

value

default
__pdffield_value_handler :ms
__pdffield default handler:#s2
953
954
955
956
957
958
959
960
961
962

963

964

965
966
967
968
969

970

8 Value keys

\cs_new_protected:Npn __pdffield_value_handler:n #1

{

\msg_info:nnn {pdffield}{key-ignored}{value}

}

\cs_new_protected:Npn __pdffield_default_handler:n #1

{

\msg_info:nnn {pdffield}{key-ignored}{default}

}
\keys_define:nn {pdffield}
{
value .code:n =
,default .code:n

}

(End of definition for value and others. These functions are documented on page

(/package)

(*wrapper)
\NeedsTeXFormat{LaTeX2e}

{ __pdffield_value_handler:n {#1} }
{ __pdffield_default_handler:n {#1}}

5

)

\ProvidesExplPackage{13pdffield-testphase}{2026-01-23}{0.96y1}/

{form fields}
\RequirePackage{13pdffield}

(/wrapper)

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

A
AA/* o 11, 847
AA/BL ... 847
AA/C 9, 535
AA/D 847
AAJE 847
AA/F o 9, 535
AAJFO o 847
AAJK oo 9, 535
AA/PC . . 847
AA/PT . o 847
AA/PO .. 847
AA/PV L 847
AN/U 847
AA/V 9, 535
AA/X 847
align oL 9, 575
altname 7, 353

34

AP/D o 10, 635
AP/N 10, 635
AP/R ... 10, 635
appearance 10, 635
AS 11, 635
B
backgroundcolor 11, 698
bool commands:
\bool_if:NTF 301, 308, 316, 324
\bool_set_true:N 21
bordercolor 11, 698
C
calculate 9, 535
caption 12, 698
create-style 5, 890

D
DA oot 9, 575
default 5, 951
depth 10, 609
down-appearance 10, 635
down-caption 12
DS 9, 575
DV . 8, 412
F
£ieldID 9, 408
\Formc.i i, 2
format L. 9, 535
FT oot 7,412
H
height 10, 609
I
T 8, 412
K
keystroke 9, 535
L
Lock 8, 412
M
mappingname 7, 353
MaxLen 8, 412
MK/AC ... 12
MK/BC ... 11, 698
MK/BG 11, 698
MK/CA ... 12, 698
MK/T o 12, 802
MK/IF ... 12, 802
MK/IX .o 12, 802
MK/R ... 11, 698
MK/RC . .ot 12
MK/RT ... 12, 802
MK/TP oo oo 12, 802
N
NAME . oottt e 7, 353
(0]
onblur 847
onenteree... 847
ONeXit . ..t v 847
onfocus 847
onmousSedoOWn 847
ONMOUSEUDP .« « ¢ v v v te e e e e e 847
Opt ... 8, 412
P
pageclose, 847

35

pageinvisible 847
PRBEOPEN . .« ottt 847
pagevisible 847
parent 7, 10, 353
pdf commands:
\pdf_string_from_unicode:nnN .. 7, 12
pdfannot commands:
\pdfannot_widget_box:nnn 4
pdfdict commands:
\pdfdict_get:nnN 179
pdffield commands:
\pdffield_annot:n 4, 226, 281
\pdffield_annot_ref_last: 5, 288, 288
\pdffield_appearance:nn
................ 5, 884, 884, 889
\pdffield_field:nn 4, 51, 136, 219
\pdffield_setup:n 5, 942, 942
\pdffield_store_appearance:nn ..
...................... 884, 889

pdffield internal commands:
__pdffield_annot: . 226, 226, 285
\1__pdffield_annot_dp_dim
258, 262, 606, 613
\1__pdffield_annot_ht_dim
258, 261, 606, 612
\g__pdffield_annot_ref_last_tl .
7, 265, 266, 274, 288
\1__pdffield_annot_wd_dim
256, 260, 606, 611
__pdffield_appearance_handler:nnn
622, 622, 659, 675, 691
\1__pdffield_caption_tl 7, 753
\1__pdffield_CO_sortkey_str
7, 183, 573
\g__pdffield_CO_sortkeys_prop ..
7, 182, 201, 206, 208
\g__pdffield_CO_sortkeys_seq . ..
17, 184, 203, 215
__pdffield_color_set:nn
333, 333, 721, 739
__pdffield_color_set_aux:nwn ..
...................... 337, 344
\1__pdffield_currentparent_tl ..
7, 140, 149, 152, 153, 157, 238,
241, 246, 250, 268, 270, 273, 277, 355
__pdffield_default_handler:n ..
951, 955, 962
\1__pdffield_down_caption_tl . 7, 789
\1__pdffield_F_bitset 67,
231, 232, 233, 234, 236, 828, 836, 839
\1__pdffield_Ff_bitset
67, 168, 517, 525, 528
__pdffield_field:n . 15, 136, 136, 223
\1__pdffield_fieldID_tl 7,410

__pdffield_key_disable:nnn .. 57, 57
\1__pdffield_rollover_caption_tl
........................ 7,771
__pdffield_style_create:nn
892, 934, 934
__pdffield_tag_add_objr:n .
266, 289, 290, 306
__pdffield_tag_add_struct_-
parent: 237, 289, 289, 299
\1__pdffield_tag_bool
7, 301, 308, 316, 324, 620
__pdffield_tag_struct_begin:
.................. 254, 291, 314
__pdffield_tag_struct_begin:__-

pdffield_tag_struct_end: . 289
__pdffield_tag_struct_end:
.................. 267, 292, 322

__pdffield_tmpa:n
..... 22, 535, 555, 802, 821, 847, 867
__pdffield_tmpa:nn
23, 557, 566, 567, 568,
569, 869, 878, 879, 880, 881, 882, 883
\1__pdffield_tmpa_keys_tl
\1__pdffield_tmpa_str
.......... 7, 359, 360, 362, 364,
370, 386, 387, 400, 401, 427, 428,
439, 440, 759, 760, 777, 778, 795, 796
\1__pdffield_tmpa_tl
7,179, 180, 722, 723, 740, 741
\1__pdffield_tmpb_str
__pdffield_V_handler:nN
............... 349, 349, 427, 439
__pdffield_value_handler:n

.................. 951, 951, 961
pdfxform commands:

\pdfxform_new:nnn 5
preset-checkbox 5, 890
preset-radio 5, 890
preset-textfield 5, 890
prop commands:

\prop_gput:Nnn 182

\prop_if_empty:NTF 201

\prop_item:Nn 206, 208

\prop_new:N 16

Q
Q 9, 575
quark commands:

\quark_if_no_value:NTF 180

R
\RequirePackage 969
rollover-appearance 10, 635

36

rollover-caption 12
rotate 11, 698
RV 9, 575
S
seq commands:
\seq_gput_right:Nn 184
\seq_gsort:Nn 203
setannotflags 11, 822
setF 11, 822
setFf 7, 511
setfieldflags 7, 511
sort commands:
\sort_return_same: 210
\sort_return_swapped: 209
sortkey 9
str commands:
\str_compare:nNnTF 205
\str_set:Nn 573
style 5, 942
SV 8, 412
T
T 7, 353
tag 10, 618
tag commands:
\tag_if_active:TF 295, 297
\tag_mc_begin_pop:n 327
\tag_mc_end_push: 318
\tag_struct_begin:n 319
\tag_struct_end: 326
\tag_struct_insert_annot:nn 311
\tag_struct_parent_int: 303, 311
0 8, 412
tl commands:
\c_space_tl 548, 860
\tl_gset:Nn 265
TM 7, 353
TU e 7, 353
U
unsetannotflags 11, 822
unsetF 11, 822
unsetFf 7, 511
unsetfieldflags 7, 511
A%
Voo 8, 412
validate 9, 535
value 5, 951
W
width L 10, 609

	1 l3pdffield Introduction
	2 Some background
	2.1 The look of a field: Appearances and other settings
	2.2 Tagged PDF

	3 Commands
	4 Special keys
	5 Field Keys
	6 Annot keys
	7 l3pdffield Implementation
	7.1 hyperref specific command
	7.2 local variables
	7.3 messages
	7.4 bitsets
	7.5 The field dictionary
	7.6 The annot dictionary
	7.7 Tagging
	7.8 auxiliary command for color keys
	7.9 Field keys
	7.10 Annotation keys
	7.11 Appearances
	7.12 Setup command

	8 Value keys
	Index
	A
	B
	C
	D
	F
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

