
The l3pdffile module
Embedding and referencing files in a PDF

LATEX PDF management bundle

The LATEX Project∗

Version 0.96y, released 2026-01-23

1 l3pdffile documentation
1.1 Introduction
1.1.1 Background

External files can be referenced from a PDF in three ways:

1. through an annotation of type Link,

2. by referencing a local file in the file system,

3. by embedding the file directly into the PDF

Case 1 (Links) are created with the \pdfannot commands. This module handles the two
other cases. Actually from the view of the PDF format they are quite similar: Case 2 is
case 3 without the stream object and without the /EF entry in the /Filespec dictionary
(this points to the stream object of the file). Not embedding the file makes the PDF
smaller. But it is also less portable: the files can only be found if they are in the right
location relative to the PDF. The normal case is to embed the file.

The tasks to embed and reference such a file are

1. Embed the file in a stream.

2. Create a Filespec dictionary which references the stream object in the /EF dictio­
nary:

<<
 /Type /Filespec
 /F (l3pdffile.dtx)
 /UF (l3pdffile.dtx)
 /AFRelationship /Source
 /EF <</F 21 0 R /UF 21 0 R>> %case 3, embedded file
>>

∗E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org

The file names in the /UF and /F value don’t need to be identical to the name of
file on the disc. It is quite possible to embed a zzz.tex and name it blub.tex.
The second name is then what the user will see in the attachment list or in the
properties of an annotation.

3. Reference the Filespec dictionary so that the user can access the file. This can be
done in various way:

(a) With an annotation (/Subtype/FileAttachment). This is done by attachfile,
attachfile2 and intopdf. Typical entries of such an annotation are:

key value type notes
/FS object reference (Filespec dictionary)
/Name name /Graph, /PushPin, /Paperclip, /Tag
/Contents text string optional but recommended
/F integer Flags
/AP dictionary Appearance (required if rectangle >0)
/AS name

The /AP takes precedence over Border and similar keys.
(b) Through an entry in the /EmbeddedFiles name tree. This is what embedfiles

does.
 20 0 obj %Document Name tree
<</EmbeddedFiles 21 0 R>>
 endobj

 21 0 obj %Embedded Files Name dictionary
<</Names [(AcmeCustomCrypto Protected PDF.pdf) 17 0 R]>>
 endobj

The strings (keys) in the /Names dictionary must be sorted lexically. But
they don’t have to be the file name or anything related to the file name. The
resource management code uses l3ef0001, l3ef0002 …, which allows up to 9999
files. The key can be needed to identify the start file in a collection, so their
relation to the files are stored in a property list.

(c) Through the /AF key in various objects (pdf 2.0). The value is normally an
array of object references, but it can also be a name which is mapped to an
array in /Properties:

 /AF /NamedAF BDC
 /Properties <</NamedAF [12 0 R]

The related /Filespec dictionary should contain an /AFRelationship key in
this case (but it doesn’t harm to add it by default anyway). The values of this
key is describe in table 1.

1.1.2 Task 1: Embedding a file

Embedding an existing file is in most cases quite straightforward. This module offers
commands, but it can also be done with the basic commands from the l3pdf mod­
ule \pdf_object_unnamed_write:nn or \pdf_object_new:n/\pdf_object_write:nnn
or primitive commands to create objects. The object number should be stored for the
reference in the /Filespec dictionary.

2

Table 1: Values of the /AFRelationship key
Source shall be used if this file specification is the original

source material for the associated content.
Data shall be used if this file specification represents infor­

mation used to derive a visual presentation – such as
for a table or a graph.

Alternative shall be used if this file specification is an alternative
representation of content, for example audio.

Supplement shall be used if this file specification represents a
supplemental representation of the original source or
data that may be more easily consumable (e.g., A
MathML version of an equation).

EncryptedPayload shall be used if this file specification is an encrypted
payload document that should be displayed to the
user if the PDF processor has the cryptographic filter
needed to decrypt the document.

FormData shall be used if this file specification is the data as­
sociated with the AcroForm (see 12.7.3, “ Interactive
form dictionary”) of this PDF.

Schema shall be used if this file specification is a schema defi­
nition for the associated object (e.g. an XML schema
associated with a metadata stream).

Unspecified (default value) shall be used when the relationship is
not known or cannot be described using one of the
other values.

Other names Second-class names (see Annex E, “ (normative) PDF
Name Registry”) should be used to represent other
types of relationships.

3

\pdf_object_unnamed_write:ne {fstream}
 {
 {
 /Type /EmbeddedFile
 /Subtype /application\c_hash_str2Fpostscript
 /Params

<<
 /ModDate ~ (\file_timestamp:n{example-image.eps})
 /Size ~ \file_size:n {example-image.eps}
 /CheckSum ~ <\file_mdfive_hash:n {example-image.eps}>
>>

 }
 {example-image.eps}

 }
\tl_set:Ne \l_my_fileobj_tl {\pdf_object_ref_last:}

• The /Params dictionary is not always required, but the commands of these module
will prefill them as shown in the examples. A /CreationDate entry has to be added
explicitly as there is no sensible way to retrieve this automatically.

• The mimetype (in the /Subtype) should be properly escaped. So for example

\pdfdict_put:nne{l_pdffile}{Subtype}{/application\string#2Fx-tex}

But while it is possible to set the subtype like this, it is normally better to rely
on the file extension and to let the code autodetect the subtype. This module
contains a property list with maps a number of file extensions to mimetypes and
the commands try to detect and fill the mimetype automatically.

• The dictionary can contain additional keys (/Filter, /DecodeParms), see the pdf
reference.

1.1.3 Task 2: Creating the /Filespec dictionary

The /Filespec dictionary is a simple dictionary object, and can also be created in various
ways. If it refers to an embedded file it should reference it in the /EF key.

1.1.4 Task 3: Referencing the /Filespec dictionary

Using the dictionary reference in annotations and /AF keys is unproblematic.
☡ But to add it to the /EmbeddedFiles name tree so that it appears in the attachment panel

requires special care: This name tree is a global resource and uncoordinated access can
lead to clashes and files that are not visible or inaccessible. The access here is managed
by the l3pdfmanagement module:
\pdfmanagement_add:nne{Catalog/Names}{EmbeddedFiles}{⟨objref⟩}

4

Table 2: Preset values in the file dictionaries
dictionary key value
l_pdffile Type /EmbeddedFile
l_pdffile/Params Size \file_size:n{\l_pdffile_source_name_str}
l_pdffile/Params ModDate (\file_timestamp:n {\l_pdffile_source_name_str})
l_pdffile/Params CheckSum <\file_mdfive_hash:n{\l_pdffile_source_name_str}>
l_pdffile/streamParams a /ModDate entry with year/month/date

(used with \pdffile_embed_stream:nnn)
l_pdffile/Filespec Type /Filespec
l_pdffile/Filespec AFRelationship Unspecified

1.2 Commands and tools of these module

The module predefines and uses a number of local dictionaries for the components of the
stream and the /Filespec object. These dictionaries are then used by the \pdffile_­
embed_XX. The content of these dictionaries can be changed by users with the commands
from the l3pdfdict module, but it should be done only locally to avoid side effects on uses
by other packages/commands.

The preset values are of these dictionaries are shown in table 2.

file
file/Params
file/streamParams
file/Filespec

\pdffile_embed_file:nnn {⟨source filename⟩} {⟨target filename⟩} {⟨object name⟩}

This commands embeds the file ⟨source filename⟩ in the PDF, and creates a /Filespec
dictionary object named ⟨object name⟩. The object name must be unique, it should
start with the module name, so e.g. module/name. The command uses the content of the
local dictionaries l_pdffile, l_pdffile/Params and l_pdffile/Filespec to setup the
dictionary entries of the stream object and the /Filespec dictionary. The /F and /UF
entry are filled with ⟨target filename⟩.

It is an error if both ⟨target filename⟩ and ⟨source filename⟩ are empty.
If ⟨target filename⟩ is empty ⟨source filename⟩ is used instead.
If ⟨source filename⟩ is empty, only a /Filespec dictionary is created.
If the l_pdffile dictionary doesn’t contain a Subtype entry with the mimetype, the

command tries to guess it from the file extension of ⟨source filename⟩. Unknown file
extensions can be added (or known extension be changed) by adding to or changing the
value in the property \g_pdffile_mimetypes_prop, see below.

When using dvips and pstopdf the actual embedding is done by pstopdf. pstopdf
will embed files only if used with the option -dNOSAFER and will not be able to use files
which are found with kpathsea.

⟨target filename⟩ doesn’t need to be a file name with an extension, but it is
recommended as security settings in the pdf viewer can restrict access to known file
types.

\pdffile_embed_file:nnn

5

\pdffile_embed_stream:nnn {⟨content⟩} {⟨target filename⟩} {⟨object name⟩}
\pdffile_embed_stream:nnN {⟨content⟩} {⟨target filename⟩} ⟨tl var⟩

This commands embeds the ⟨content⟩ in the PDF in a stream objects and creates either a
/Filespec dictionary object named ⟨object name⟩, or stores the object reference (what
you would get with \pdf_object_ref:n) in ⟨tl var⟩. ⟨content⟩ is wrapped in a \exp_­
not:n. The object name must be unique. The command uses the content of the local
dictionaries l_pdffile, l_pdffile/streamParams and l_pdffile/Filespec to setup
the dictionary entries of the stream object and the /Filespec dictionary. The /F and
/UF entry are filled with ⟨target filename⟩. If ⟨target filename⟩ is empty the fix
name stream.txt is used instead.

If the l_pdffile dictionary doesn’t contain a Subtype entry with the mimetype, the
command tries to guess it from the file extension of ⟨target filename⟩.

⟨target filename⟩ doesn’t need to be a file name with an extension, but it is
recommended as security settings in the pdf viewer can restrict access to known file
types.

The stream should not be too long, at least PS imposes a size limit for strings.

\pdffile_embed_stream:nnn
\pdffile_embed_stream:nnN

\ pdffile_filespec:nnn {⟨object name⟩} {⟨file name⟩} {⟨stream object reference⟩}

The previous commands are fine if stream and filespec dictionary can be created together.
But there are cases where the filespec dictionary should be referenced when the stream
object doesn’t exist yet. For example in the AF key of a structure at the begin of an
environment where the stream is created from the body.

This command allows to write a filespec dictionary alone and reference a previously
created stream.

 \pdf_object_new:n {module/filespec/A} % a new filespec object
 \pdf_object_ref:n {module/filespec/A} % reference it somewhere, e.g. in AF
 % now write the stream
 \pdf_object_unnamed_write:nn { stream }{ {...}{content} }
 % and fill and write the filespec dictionary:
 \pdffile_filespec:nnn {module/filespec/A}{A.xml}{\pdf_object_ref_last:}

\pdffile_filespec:nnn
\pdffile_filespec:nne

This property contains a list of extensions and their mimetypes. Values can be added or
changed with the standard commands:

\prop_gput:Nnn \g_pdffile_mimetypes_prop {.abc}{text/plain}
The extension should start with a period, the mimetype should be given as plain

text (it will be escaped internally). Extensions with two periods are not supported.

\g_pdffile_mimetypes_prop

6

\g_pdffile_embed_pdfa_int
\g_pdffile_embed_nonpdfa_int

These two integers hold the number of embedded files in PDF/A format and non-
PDF/A format and can be used for a rough test for the requirements in l3pdfmeta
no_embed_content (both should be zero) and only_pdfa_embed_content (the second
should be zero). The commands \pdffile_embed_stream:... and \pdffile_embed_file:...
increase the integers. As the code can currently not detect if an embedded file follows a
PDF/A standard it simply goes by the extension: files embedded as .pdf increase the
first integer.

\pdffile_filespec:nnn does not increase the integers, if this command is used it
lies in the responsibility of the author to adjust the integers.

The integers are public so that users can query and adjust the values, e.g. in tests
for standard compliance.

This variable is set at the begin of \pdffile_embed_file:nnn. It can be (and is) used
in the file dictionaries, see table 2 for examples.

\l_pdffile_source_name_str

This property holds a list of embedded files. It is used by the following show command.
The keys are the object names, the argument holds a key word, the source file name and
the target file name. It stores a file only if the boolean \l_pdffile_embed_show_bool
is true when the file is embedded.

\g_pdffile_embed_prop

This boolean is used to decided if a file should be stored in the property or not. As
storing can be slow if there are many files, it is false by default.

\l_pdffile_embed_show_bool

This shows the stored embedded files with their source and target name.\pdffile_embed_show:

1.3 Example
\group_begin:
%set the relationship:
\pdfdict_put:nnn {l_pdffile/Filespec} {AFRelationship}{/Source}
%set the description key. The text must first be converted:
\pdf_string_from_unicode:nnN {utf16/string}
 {this~is~an~odd~description~with~öäü}
 \l_tmpa_str

\pdfdict_put:nne {l_pdffile/Filespec} {Desc}{\l_tmpa_str}
%embeds testinput.txt and calls it grüße.txt
\pdffile_embed_file:nnn {testinput.txt}{grüße.txt}{mymodule/example1}
%reference it in the panel
\pdfmanagement_add:nne
 {Catalog/Names}
 {EmbeddedFiles}
 {\pdf_object_ref:n{mymodule/example1}}

\group_end:

7

2 l3pdffile implementation
 1 ⟨∗header⟩
 2 \ProvidesExplPackage{l3pdffile}{2026-01-23}{0.96y}
 3 {embedding and referencing files in PDF---LaTeX PDF management bundle}
 4 \RequirePackage{l3pdftools} %temporarily!!
 5 ⟨/header⟩

 6 ⟨∗package⟩
 7 ⟨@@=pdffile⟩
 8 \cs_new_protected:Npn __pdffile_filename_convert_to_print:nN #1 #2
 9 {\pdf_string_from_unicode:nnN {utf16/hex}{#1}{#2}}

2.1 Messages
 10 \msg_new:nnn { pdffile } { file-not-found }
 11 {
 12 File~'\tl_to_str:n{#1}'~not~found
 13 }
 14
 15 \msg_new:nnn { pdffile } { mimetype-missing }
 16 {
 17 Mime~type~not~set~for~file~'\tl_to_str:n{#1}'
 18 }
 19
 20 \msg_new:nnn { pdffile } { target-name-missing }
 21 {
 22 a~target~name~for~the~/Filespec~dictionary~is~missing.
 23 }
 24
 25 \msg_new:nnn { pdffile } { object-exists }
 26 {
 27 object~name~'#1'~is~already~used.
 28 }
 29
 30 \msg_new:nnn { pdffile } { show-files }
 31 {
 32 The~following~files~have~been~embedded\\
 33 #1
 34 }

2.2 Variables
\l__pdffile_tmpa_tl
\l__pdffile_tmpb_tl
\g__pdffile_tmpa_tl
\l__pdffile_tmpa_str
\l__pdffile_tmpb_str
\l__pdffile_ext_str

\l__pdffile_automimetype_tl
\l__pdffile_embed_ref_tl

temporary variables: generic, for extension, subtype, to store the ref.
(End of definition for \l__pdffile_tmpa_tl and others.)

 35 \tl_new:N \l__pdffile_tmpa_tl
 36 \tl_new:N \l__pdffile_tmpb_tl
 37 \tl_new:N \g__pdffile_tmpa_tl
 38 \str_new:N \l__pdffile_tmpa_str
 39 \str_new:N \l__pdffile_tmpb_str
 40 \str_new:N \l__pdffile_ext_str
 41 \tl_new:N \l__pdffile_automimetype_tl
 42 \tl_new:N \l__pdffile_embed_ref_tl

8

\g_pdffile_mimetypes_prop This variable holds common mimetypes. The key is an extension with (one) period, the
value the description, e.g. text/csv.
(End of definition for \g_pdffile_mimetypes_prop. This variable is documented on page 6.)

 43 \prop_new:N \g_pdffile_mimetypes_prop
 44 \prop_gset_from_keyval:Nn \g_pdffile_mimetypes_prop
 45 {
 46 ,.css = text/css
 47 ,.csv = text/csv
 48 ,.html= text/html
 49 ,.dtx = text/plain %or application/x-tex, not in iana.org list
 50 ,.eps = application/postscript
 51 ,.jpg = image/jpeg
 52 ,.mp4 = video/mp4
 53 ,.pdf = application/pdf
 54 ,.png = image/png
 55 ,.tex = application/x-tex %not in iana.org list but probably better
 56 ,.txt = text/plain
 57 ,.sty = text/plain
 58 ,.xml = application/xml
 59 }

\g_pdffile_embed_pdfa_int
\g_pdffile_embed_nonpdfa_int

These two integers hold the number of embedded files in PDF/A format and non-
PDF/A format and can be used for a rough test for the requirements in l3pdfmeta
no_embed_content (both should be zero) and only_pdfa_embed_content (the second
should be zero). The commands \pdffile_embed_stream:... and \pdffile_embed_file:...
increase the integers. As the code can currently not detect if an embedded file follows a
PDF/A standard it simply goes by the extension: files embedded as .pdf increase the
first integer.
\pdffile_filespec:nnn does not increase the integers, if this command is used it lies
in the responsibility of the author to adjust the integers.
The integers are public so that users can query and adjust the values, e.g. in tests for
standard compliance.

 60 \int_new:N\g_pdffile_embed_pdfa_int
 61 \int_new:N\g_pdffile_embed_nonpdfa_int

(End of definition for \g_pdffile_embed_pdfa_int and \g_pdffile_embed_nonpdfa_int. These variables
are documented on page 7.)

\l_pdffile_source_name_str \l_pdffile_source_name_str will be set at the begin of the command and contains the
full file name and can be used e.g. with \file_timestamp:n.
(End of definition for \l_pdffile_source_name_str. This variable is documented on page 7.)

 62 \str_new:N \l_pdffile_source_name_str

Here we define and setup the local dictionaries. We add a ModDate to ensure that there
is an entry if associated files are used.

 63 \pdfdict_new:n { l_pdffile }
 64 \pdfdict_put:nnn { l_pdffile }{Type}{/EmbeddedFile}
 65 \pdfdict_new:n { l_pdffile/Params }
 66 \pdfdict_put:nnn { l_pdffile/Params }

9

 67 {ModDate} { (\file_timestamp:n { \l_pdffile_source_name_str }) }
 68 \pdfdict_put:nnn { l_pdffile/Params }
 69 {Size} { \file_size:n { \l_pdffile_source_name_str } }
 70 \pdfdict_put:nnn { l_pdffile/Params }
 71 {CheckSum} { <\file_mdfive_hash:n { \l_pdffile_source_name_str }> }
 72 \pdfdict_new:n { l_pdffile/streamParams }
 73 \pdfdict_put:nnn { l_pdffile/streamParams }
 74 {ModDate} {
 75 (
 76 D:\int_use:N\c_sys_year_int
 77 \int_compare:nNnT{\c_sys_month_int}<{10}{0}
 78 \int_use:N\c_sys_month_int
 79 \int_compare:nNnT{\c_sys_day_int}<{10}{0}
 80 \int_use:N\c_sys_day_int
 81)
 82 }
 83 \pdfdict_new:n { l_pdffile/Filespec }
 84 \pdfdict_put:nnn { l_pdffile/Filespec }
 85 {Type} { /Filespec }
 86 \pdfdict_put:nnn { l_pdffile/Filespec }
 87 {AFRelationship} { /Unspecified }
 88

\g_pdffile_embed_prop
\l_pdffile_embed_show_bool

we record here the relation
⟨object name⟩ ⇒ {⟨file/stream or empty⟩}{⟨sourcename⟩}{⟨targetname⟩} if the boolean
is true

 89 \prop_new_linked:N \g_pdffile_embed_prop
 90 \bool_new:N \l_pdffile_embed_show_bool

(End of definition for \g_pdffile_embed_prop and \l_pdffile_embed_show_bool. These variables are
documented on page 7.)

\pdffile_embed_show:

 91 \cs_new_protected:Npn \pdffile_embed_show:
 92 {
 93 \msg_show:nne
 94 {pdffile}{show-files}
 95 {
 96 \prop_map_function:NN {\g_pdffile_embed_prop} \msg_show_item:nn
 97 }
 98 }

(End of definition for \pdffile_embed_show:. This function is documented on page 7.)

\pdffile_embed_file:nnn
\pdffile_embed_stream:nnn
\pdffile_embed_stream:nnN

At first a command to set the mimetype. It either uses the current value in the file
dictionary, or tries to guess it from the extension.

__pdffile_mimetype_set:nNN
__pdffile_mimetype_set:VNN
__pdffile_fstream_write:nN
__pdffile_fstream_write:VN
__pdffile_stream_write:nN
__pdffile_stream_write:VN

 99 %#1 file name,
100 %#2 tl to return the (printed) value for the guessed mimetype
101 %#3 tl to return the file extension (that is a string)
102 \cs_new_protected:Npn __pdffile_mimetype_set:nNN #1 #2 #3

10

103 {
104 \file_parse_full_name:nNNN
105 {#1}
106 \l__pdffile_tmpa_str %unused
107 \l__pdffile_tmpb_str %unused
108 \l__pdffile_ext_str
109 %check if Subtype has been set
110 \pdfdict_get:nnN { l_pdffile}{Subtype}\l__pdffile_tmpa_tl
111 %if not look up in the prop:
112 \quark_if_no_value:NT \l__pdffile_tmpa_tl
113 {
114 \prop_get:NVNTF
115 \g_pdffile_mimetypes_prop
116 \l__pdffile_ext_str
117 \l__pdffile_tmpb_tl
118 {
119 \tl_set:Ne #2 {/Subtype~\pdf_name_from_unicode_e:V \l__pdffile_tmpb_tl}
120 }
121 {
122 \msg_warning:nne { pdffile }{ mimetype-missing} {#1}
123 \tl_clear:N #2
124 }
125 }
126 \tl_set_eq:NN #3 \l__pdffile_ext_str
127 }
128
129 \cs_generate_variant:Nn __pdffile_mimetype_set:nNN {VNN}
130
131 % #1 tl containing a file extension
132 \cs_new_protected:Npn __pdffile_count_embed:N #1
133 {
134 \str_if_eq:VnTF #1 {.pdf}
135 {\int_gincr:N \g_pdffile_embed_pdfa_int }
136 {\int_gincr:N \g_pdffile_embed_nonpdfa_int }
137 }
138
139 %#1 file name,
140 %#2 tl, should be empty or contain /Subtype /mimetype
141 % e.g. result from __pdffile_mimetype_set:nNN
142 \cs_new_protected:Npn __pdffile_fstream_write:nN #1 #2
143 {
144 \pdf_object_unnamed_write:ne { fstream }
145 {
146 {
147 #2
148 \pdfdict_use:n { l_pdffile}
149 \pdfdict_if_empty:nF { l_pdffile/Params}
150 {
151 /Params
152 <<
153 \pdfdict_use:n { l_pdffile/Params}
154 >>
155 }
156 }

11

157 { #1 }
158 }
159 \tl_clear:N \l__pdffile_automimetype_tl
160 }
161
162 \cs_generate_variant:Nn __pdffile_fstream_write:nN {VN}
163
164 %#1 file content
165 %#2 tl, should be empty or contain /Subtype /mimtype
166 % e.g. result from __pdffile_mimetype_set:nNN
167 \cs_new_protected:Npn __pdffile_stream_write:nN #1 #2
168 {
169 \pdf_object_unnamed_write:ne { stream }
170 {
171 {
172 #2
173 \pdfdict_use:n { l_pdffile}
174 \pdfdict_if_empty:nF { l_pdffile/streamParams}
175 {
176 /Params
177 <<
178 \pdfdict_use:n { l_pdffile/streamParams}
179 >>
180 }
181 }
182 { \exp_not:n { #1 } }
183 }
184 \tl_clear:N \l__pdffile_automimetype_tl
185 }
186
187 \cs_generate_variant:Nn __pdffile_stream_write:nN {VN}
188
189 %#1 symbolic name of dict object
190 %#2 target file name,
191 %#3 object ref of the file stream.
192 \cs_new_protected:Npn __pdffile_filespec_write:nnn #1 #2 #3
193 {
194 \tl_if_blank:nTF { #2 }
195 {
196 \msg_error:nn {pdffile}{target-name-missing}
197 }
198 {
199 \group_begin:
200 \pdf_string_from_unicode:nnN {utf8/string}{#2}\l__pdffile_tmpa_str
201 \pdfdict_put:nne {l_pdffile/Filespec}{F} { \l__pdffile_tmpa_str }
202 __pdffile_filename_convert_to_print:nN { #2 } \l__pdffile_tmpa_str
203 \pdfdict_put:nne {l_pdffile/Filespec}{UF}{ \l__pdffile_tmpa_str }
204 \pdf_object_write:nne { #1 } { dict }
205 {
206 \pdfdict_use:n { l_pdffile/Filespec}
207 \tl_if_empty:nF { #3 }
208 {
209 /EF <</F~#3 /UF~#3>>
210 }

12

211 }
212 \group_end:
213 }
214 }
215
216 %#1 target file name #2 object ref of file stream #3 reference of object
217 \cs_new_protected:Npn __pdffile_filespec_write:nnN #1 #2 #3
218 {
219 \tl_if_blank:nTF { #1 }
220 {
221 \msg_error:nn {pdffile}{target-name-missing}
222 }
223 {
224 \group_begin:
225 \pdf_string_from_unicode:nnN {utf8/string}{#1}\l__pdffile_tmpa_str
226 \pdfdict_put:nne {l_pdffile/Filespec}{F} { \l__pdffile_tmpa_str }
227 __pdffile_filename_convert_to_print:nN { #1 } \l__pdffile_tmpa_str
228 \pdfdict_put:nne {l_pdffile/Filespec}{UF}{ \l__pdffile_tmpa_str }
229 \pdf_object_unnamed_write:ne {dict}
230 {
231 \pdfdict_use:n { l_pdffile/Filespec}
232 \tl_if_empty:nF { #2 }
233 {
234 /EF <</F~#2 /UF~#2>>
235 }
236 }
237 \tl_gset:Ne\g__pdffile_tmpa_tl{\pdf_object_ref_last:}
238 \group_end:
239 \tl_set_eq:NN#3\g__pdffile_tmpa_tl
240 }
241 }
242
243 \cs_set_eq:NN \pdffile_filespec:nnn __pdffile_filespec_write:nnn
244 \cs_generate_variant:Nn \pdffile_filespec:nnn {nne,nnx}
245 %#1 {source filename}
246 %#2 {target filename}
247 %#3 { filespec object name } (will internally get a prefix! ??)
248 \cs_new_protected:Npn \pdffile_embed_file:nnn #1 #2 #3
249 { % if #1 empty => only filespec
250 % if #2 empty => = #1
251 \pdf_object_if_exist:nTF { #3 }
252 {
253 \msg_error:nnn { pdffile }{ object-exists } { #3 }
254 }
255 {
256 \tl_if_blank:nTF { #1 }
257 {
258 \tl_set:Nn \l__pdffile_embed_ref_tl {}
259 }
260 {
261 \file_get_full_name:nNTF {#1} \l_pdffile_source_name_str
262 {
263 __pdffile_mimetype_set:VNN
264 \l_pdffile_source_name_str

13

265 \l__pdffile_automimetype_tl
266 \l__pdffile_tmpa_tl
267 __pdffile_count_embed:N \l__pdffile_tmpa_tl
268 __pdffile_fstream_write:VN
269 \l_pdffile_source_name_str
270 \l__pdffile_automimetype_tl
271 \tl_set:Ne \l__pdffile_embed_ref_tl { \pdf_object_ref_last: }
272 }
273 {
274 \msg_error:nnn { pdffile }{ file-not-found }{ #1 }
275 }
276
277 }
278 \bool_if:NT\l_pdffile_embed_show_bool
279 {
280 \prop_gput:Nne
281 \g_pdffile_embed_prop
282 { #3 }
283 {
284 { \tl_if_blank:nTF { #1 } {filespec}{file} }
285 {\l_pdffile_source_name_str}
286 {
287 \tl_if_blank:nTF { #2 }
288 { \l_pdffile_source_name_str }
289 { \tl_to_str:n{#2}}
290 }
291 }
292 }
293 \tl_if_blank:nTF { #2 }
294 {
295 \pdf_object_new:n { #3 }
296 \exp_args:Nnne
297 __pdffile_filespec_write:nnn
298 %#1 dict, #2 target file name, #3 object ref
299 { #3 }
300 { #1 }
301 {\l__pdffile_embed_ref_tl}
302 }
303 {
304 \pdf_object_new:n { #3 }
305 \exp_args:Nnne
306 __pdffile_filespec_write:nnn
307 %#1 dict, #2 target file name, #3 object ref
308 { #3 }
309 { #2 }
310 {\l__pdffile_embed_ref_tl}
311 }
312 }
313 }
314
315
316 %#1{stream content}
317 %#2{target filename}
318 %#3{file object name }

14

319 \cs_new_protected:Npn \pdffile_embed_stream:nnn #1 #2 #3
320 {
321 % if #2 empty => error
322 \pdf_object_if_exist:nTF { #3 }
323 {
324 \msg_error:nnn { pdffile }{ object-exists } { #3 }
325 }
326 {
327 \bool_if:NT\l_pdffile_embed_show_bool
328 {
329 \prop_gput:Nne
330 \g_pdffile_embed_prop
331 { #3 }
332 {{stream}{}{\tl_if_blank:nTF {#2}{stream.txt}{\exp_not:n{#2}}}}
333 }
334 \tl_if_blank:nTF {#2}
335 { __pdffile_mimetype_set:nNN {stream.txt}\l__pdffile_automimetype_tl \l__pdffile_tmpa_tl}
336 { __pdffile_mimetype_set:nNN { #2 } \l__pdffile_automimetype_tl \l__pdffile_tmpa_tl }
337 __pdffile_count_embed:N \l__pdffile_tmpa_tl
338 __pdffile_stream_write:nN
339 { #1 }
340 \l__pdffile_automimetype_tl
341 \tl_set:Ne \l__pdffile_embed_ref_tl { \pdf_object_ref_last: }
342 \pdf_object_new:n { #3 }
343 \exp_args:Nnee
344 __pdffile_filespec_write:nnn
345 %#1 dict, #2 target file name, #3 object ref
346 { #3 }
347 { \tl_if_blank:nTF {#2}{stream.txt}{\exp_not:n{#2}} }
348 {\l__pdffile_embed_ref_tl}
349 }
350 }
351
352 \cs_new_protected:Npn \pdffile_embed_stream:nnN #1 #2 #3
353 {
354 \tl_if_blank:nTF {#2}
355 { __pdffile_mimetype_set:nNN {stream.txt}\l__pdffile_automimetype_tl \l__pdffile_tmpa_tl}
356 { __pdffile_mimetype_set:nNN { #2 } \l__pdffile_automimetype_tl \l__pdffile_tmpa_tl }
357 __pdffile_count_embed:N\l__pdffile_tmpa_tl
358 __pdffile_stream_write:nN
359 { #1 }
360 \l__pdffile_automimetype_tl
361 \tl_set:Ne \l__pdffile_embed_ref_tl { \pdf_object_ref_last: }
362 \exp_args:Nee
363 __pdffile_filespec_write:nnN
364 %#1 target file name, #2 object ref of stream, #3 object ref of filespec
365 { \tl_if_blank:nTF {#2}{stream.txt}{\exp_not:n{#2}} }
366 {\l__pdffile_embed_ref_tl}
367 #3
368 \bool_if:NT \l_pdffile_embed_show_bool
369 {
370 \prop_gput:Nee
371 \g_pdffile_embed_prop
372 { #3 }

15

373 {{stream}{}{\tl_if_blank:nTF {#2}{stream.txt}{\exp_not:n{#2}}}}
374 }
375 }
376
377

(End of definition for \pdffile_embed_file:nnn and others. These functions are documented on page
5.)

378 ⟨/package⟩

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
\\ . 32

 pdffile commands:
 \␣pdffile_filespec:nnn 6

B
bool commands:
 \bool_if:NTF 278, 327, 368
 \bool_new:N 90

C
cs commands:
 \cs_generate_variant:Nn

. 129, 162, 187, 244
 \cs_new_protected:Npn . 8, 91, 102,

132, 142, 167, 192, 217, 248, 319, 352
 \cs_set_eq:NN 243

E
exp commands:
 \exp_args:Nee 362
 \exp_args:Nnee 343
 \exp_args:Nnne 296, 305
 \exp_not:n . . 6, 182, 332, 347, 365, 373

F
file . 5
file commands:
 \file_get_full_name:nNTF 261
 \file_mdfive_hash:n 71
 \file_parse_full_name:nNNN 104
 \file_size:n 69
 \file_timestamp:n 9, 67
file/Filespec . 5
file/Params . 5

file/streamParams 5

G
group commands:
 \group_begin: 199, 224
 \group_end: 212, 238

I
int commands:
 \int_compare:nNnTF 77, 79
 \int_gincr:N 135, 136
 \int_new:N 60, 61
 \int_use:N 76, 78, 80

M
msg commands:
 \msg_error:nn 196, 221
 \msg_error:nnn 253, 274, 324
 \msg_new:nnn 10, 15, 20, 25, 30
 \msg_show:nnn 93
 \msg_show_item:nn 96
 \msg_warning:nnn 122

P
pdf commands:
 \pdf_name_from_unicode_e:n 119
 \pdf_object_if_exist:nTF . . 251, 322
 \pdf_object_new:n . . . 2, 295, 304, 342
 \pdf_object_ref:n 6
 \pdf_object_ref_last:

. 237, 271, 341, 361
 \pdf_object_unnamed_write:nn . . .

. 2, 144, 169, 229
 \pdf_object_write:nnn 2, 204
 \pdf_string_from_unicode:nnN . . .

. 9, 200, 225

16

\pdfannot . 1
pdfdict commands:
 \pdfdict_get:nnN 110
 \pdfdict_if_empty:nTF 149, 174
 \pdfdict_new:n 63, 65, 72, 83
 \pdfdict_put:nnn 64,

66, 68, 70, 73, 84, 86, 201, 203, 226, 228
 \pdfdict_use:n

. 148, 153, 173, 178, 206, 231
pdffile commands:
 \pdffile_embed_file:nnn 5, 7, 99, 248
 \g_pdffile_embed_nonpdfa_int . . .

. 7, 60, 136
 \g_pdffile_embed_pdfa_int 7, 60, 135
 \g_pdffile_embed_prop

. 7, 89, 96, 281, 330, 371
 \pdffile_embed_show: 7, 91, 91
 \l_pdffile_embed_show_bool

. 7, 89, 278, 327, 368
 \pdffile_embed_stream:nnN 6, 99, 352
 \pdffile_embed_stream:nnn 5, 6, 99, 319
 \pdffile_embed_XX 5
 \pdffile_filespec:nnn 6, 243, 244
 \g_pdffile_mimetypes_prop

. 5, 6, 43, 43, 44, 115
 \l_pdffile_source_name_str

. 7, 9, 62,
62, 67, 69, 71, 261, 264, 269, 285, 288

pdffile internal commands:
 \l__pdffile_automimetype_tl

. 35, 41, 159, 184,
265, 270, 335, 336, 340, 355, 356, 360

 __pdffile_count_embed:N
. 132, 267, 337, 357

 \l__pdffile_embed_ref_tl . 35, 42,
258, 271, 301, 310, 341, 348, 361, 366

 \l__pdffile_ext_str
. 35, 40, 108, 116, 126

 __pdffile_filename_convert_to_­
print:nN 8, 202, 227

 __pdffile_filespec_write:nnN . .
. 217, 363

 __pdffile_filespec_write:nnn . .
. 192, 243, 297, 306, 344

 __pdffile_fstream_write:nN
. 99, 142, 162, 268

 __pdffile_mimetype_set:nNN
. 99, 102,
129, 141, 166, 263, 335, 336, 355, 356

 __pdffile_stream_write:nN
. 99, 167, 187, 338, 358

 \l__pdffile_tmpa_str . 35, 38, 106,
200, 201, 202, 203, 225, 226, 227, 228

 \g__pdffile_tmpa_tl . . 35, 37, 237, 239
 \l__pdffile_tmpa_tl 35, 35, 110, 112,

266, 267, 335, 336, 337, 355, 356, 357
 \l__pdffile_tmpb_str 35, 39, 107
 \l__pdffile_tmpb_tl . . 35, 36, 117, 119
prop commands:
 \prop_get:NnNTF 114
 \prop_gput:Nnn 280, 329, 370
 \prop_gset_from_keyval:Nn 44
 \prop_map_function:NN 96
 \prop_new:N 43
 \prop_new_linked:N 89
\ProvidesExplPackage 2

Q
quark commands:
 \quark_if_no_value:NTF 112

R
\RequirePackage 4

S
str commands:
 \str_if_eq:nnTF 134
 \str_new:N 38, 39, 40, 62
sys commands:
 \c_sys_day_int 79, 80
 \c_sys_month_int 77, 78
 \c_sys_year_int 76

T
tl commands:
 \tl_clear:N 123, 159, 184
 \tl_gset:Nn 237
 \tl_if_blank:nTF 194, 219, 256, 284,

287, 293, 332, 334, 347, 354, 365, 373
 \tl_if_empty:nTF 207, 232
 \tl_new:N 35, 36, 37, 41, 42
 \tl_set:Nn 119, 258, 271, 341, 361
 \tl_set_eq:NN 126, 239
 \tl_to_str:n 12, 17, 289

17

	1 l3pdffile documentation
	1.1 Introduction
	1.1.1 Background
	1.1.2 Task 1: Embedding a file
	1.1.3 Task 2: Creating the /Filespec dictionary
	1.1.4 Task 3: Referencing the /Filespec dictionary

	1.2 Commands and tools of these module
	1.3 Example

	2 l3pdffile implementation
	2.1 Messages
	2.2 Variables

	Index
	Symbols
	B
	C
	E
	F
	G
	I
	M
	P
	Q
	R
	S
	T

