
The l3pdfmanagement module
Managing central PDF resources
LATEX PDF management bundle

The LATEX Project∗

Version 0.96y, released 2026-01-23

1 l3pdfmanagement documentation
When creating a pdf a number of objects, dictionaries and entries to central “ core”
dictionaries must be created.

The commands in this module offer interfaces to this core PDF dictionaries They
unify a number of primitives like the pdftex registers and commands \pdfcatalog,
\pdfpageattr, \pdfpagesattr, \pdfinfo, \pdfpageresources and similar commands
of the other backends in a backend independent way.

The supported backends are pdflatex, lualatex, (x)dvipdfmx (latex, xelatex and—
starting in texlive 2021–lualatex) and dvips with ps2pdf (not completely yet). dvips with
distiller could work too but is untested.

That the interfaces are backend independent doesn’t mean that the results and even
the compilation behavior is identical. The backends are too different to allow this. Some
backends expand arguments e.g. in a \special while other don’t. Some backends can
insert a resource at the first compilation, while another uses the aux-file and a label and
so needs at least two. Some backends create and manage resources automatically which
must be managed manually by other backends.

The dictionaries and resources handled by this module are inserted only once in a
PDF or only once per page. Examples are the Catalog dictionary, the Info dictionary,
the page resources. For these dictionaries and resources management by the LATEX kernel
is necessary to avoid that packages overwrite settings from other packages which would
lead to clashes and incompatibilities. It is therefore necessary that all packages which
want to add content to these dictionaries and resources use the interface provided by this
module.

As these dictionaries and resources are so central for the PDF format values to
these dictionaries are always added globally. Through the interface values can be added
(and in many cases also removed) by users and packages, but the actually writing of the
dictionary entries and resources to the PDF is handled by the kernel code.

The interface uses as main name to address the resources Paths which follow the
names and structure described in the PDF reference. This should make it easy to identify

∗E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org

the names needed to insert a specific PDF resources with the new interfaces. All Paths
have names starting with an uppercase letter.

The following tabular summarize the Paths and which pdftex primitive they replace:
Info \pdfinfo
Catalog & various subdictionaries \pdfcatalog
Pages \pdfpagesattr
Page, ThisPage \pdfpageattr
Page/Resources/ExtGState \pdfpageresources
Page/Resources/Shading \pdfpageresources
Page/Resources/Pattern \pdfpageresources
Page/Resources/ColorSpace \pdfpageresources

There is no Page/Resources/Properties dictionary in the list, because this dictio­
nary is not filled directly, but managed through side effects when setting BDC-marks.

1.1 User Commands
To avoid problems with older documents the resource management of this module is not
activated unconditionally. The values are pushed out to the dictionaries only if a boolean
has been set to true. The state can be tested with a conditional.

\pdfmanagement_if_active_p: ⋆
\pdfmanagement_if_active:TF ⋆

New: 2020-07-04

This conditional tests if the resource management code is active.

This is a LaTeX2e version of the conditional\IfPDFManagementActiveTF

New: 2021-07-23

2

\pdfmanagement_add:nnn {⟨resource path⟩} {⟨name⟩} {⟨value⟩}\pdfmanagement_add:nnn
\pdfmanagement_add:(nne|nee|eee)
\PDFManagementAdd

New: 2020-04-06

Updated: 2021-07-23

This function puts {⟨name⟩} {⟨value⟩} in the PDF resource described by the symbolic
name {⟨resource path⟩}. Technically it stores it globally in an internal property lists and
writes it later into the right PDF dictionary1 Which values for {⟨resource path⟩} exist
is described in the following. {⟨name⟩} should be a PDF Name without the starting
slash. Like with all keys used in PDF dictionaries (see the l3pdfdict module) the name
is escaped with \str_convert_pdfname:n when stored. {⟨value⟩} should be a valid
PDF value for this Name in the target dictionary. \PDFManagementAdd is a copy of
\pdfmanagement_add:eee and so expands all its arguments.

The code works with all major engines but not necessarily in the same way. Most
importantly

• The expansion behaviour of the backends can differ. Some backends expand a value
always fully when writing to the PDF, with other backends command names could
end as strings in the PDF. So one should neither rely on {⟨name⟩} {⟨value⟩} to be
expanded nor not expanded by the backend commands.

• The number of compilations needed can differ between the engines and backends.
Some engines have to use labels and the aux-file to setup the dictionaries and so
need at least two compilations to put everything in place.

• dvips doesn’t support everything. It is for example not possible to add manually or
through side effects a name tree like /AP or /JavaScript, pdfmark doesn’t provide
a handler here—at least I didn’t find anything suitable.

\pdfmanagement_show:n {⟨resource path⟩}

This shows the content of the dictionary targeted by {⟨resource path⟩} in the log and on
the terminal if possible.

It is not reliable for page resources as these are filled at shipout.
It also doesn’t show necessarily all the content. For example most backends add

automatically entries to the Info dictionary.

\pdfmanagement_show:n

New: 2020-04-08

\pdfmanagement_remove:nn {⟨resource path⟩} {⟨name⟩}

Removes /⟨name⟩ and its associated ⟨value⟩ from the dictionary described with
{⟨resource path⟩} The removal is global. If ⟨name⟩ is not found no change occurs, i.e there
is no need to test for the existence of a name before trying to remove it. Values from the
special Catalog entries where the values are collected in arrays can’t be removed (but
should ever a use case appear it could be added).

\pdfmanagement_remove:nn

New: 2020-04-07

1Currently all resources are PDF dictionaries, so resource and dictionary mean the same.

3

1.2 Description of the resource paths
1.2.1 Info: The Info dictionary

☡ If the primitive commands of the engines are used too there will be double entries in
the pdf (at least with the backend pdftex and luatex). How pdf viewer handles this is
unpredictable.

\pdfmanagement_add:nnn {Info} {⟨name⟩} {⟨value⟩}

Adds /⟨name⟩ and the ⟨value⟩ to the Info dictionary. ⟨name⟩ should be a PDF name
without the leading slash, Like with all keys used in PDF dictionaries (see the l3pdf­
dict module) the name is escaped with \str_convert_pdfname:n when stored. ⟨value⟩
should be a valid pdf value. Any escaping or (re)encoding must be done explicitly. If a
⟨name⟩ is used twice, only the last ⟨value⟩ set will be used. The Info dictionary is writ­
ten at the end of the compilation, so values can be set at any time. The Info dictionary
expects utf16be in the strings, so a conversion like this is normally sensible:

 \str_set_convert:Nnnn \l_tmpa_str { Grüße }{ default } {utf16/string}
 \pdfmanagement_add:nne {Info} {Title}{(\l_tmpa_str)}

pdfmanagement: Info

The entries in Info dictionary are rather special as the engines/backends adds some
core entries, and changing or removing these entries is not always possible.

The special entries are

Producer Added by all engines and backends. Removing the entry is only possible
with luatex with \pdfvariable suppressoptionalinfo 128. Changing is possi­
ble with \pdfmanagement_add:nnn with the exception of dvips/pstopdf where the
entry is always something like GPL Ghostscript 9.53.3.

Creator Added by all engines and backends. Removal only possible in luatex by adding
16 to the bitset. Changing is possible with the management command.

CreationDate Added by all engines and backends. With the exception of dvips/ps2pdf
SOURCE_DATE_EPOCH is honored. With pdftex it is possible to suppress it with
\pdfinfoomitdate = 1, and in luatex by adding 32 to the bitset. Changing is
possible with the management command and will overwrite an epoch setting.

ModDate Added by all engines and backends with the exception of xdvipdfmx. With
the exception of dvips/ps2pdf SOURCE_DATE_EPOCH is honored. Suppressing it is
possible in pdftex with \pdfinfoomitdate = 1, and in luatex by adding 64 to the
bitset. Changing is possible with the management command.

Trapped Added by pdftex and luatex. Removal only possible in luatex by adding 256
to the bitset. Changing (and adding in the other backends) is possible with the
management command.

PTEX.Fullbanner Added by pdftex and luatex. Removal possible in pdftex with
\pdfsuppressptexinfo-1, in luatex by adding 512 to the bitset. Changing is
not possible.

Title Added by dvips/ps2pdf and set to filename.dvi. Removal is probably not pos­
sible, but it can be overwritten with the management command.

4

1.2.2 Pages: The “ Pages” dictionary

☡ As the content of this dictionary is written at the end it will in pdftex and luatex overwrite
values added with the primitive commands (e.g. \pdfpagesattr. Package authors should
use the management commands instead.

By using this path with the pdfmanagement interface, values can be added to the
/Pages object. This replaces for example \pdfpagesattr.

\pdfmanagement_add:nnn {Pages} {⟨name⟩} {⟨value⟩}

Adds /⟨name⟩ ⟨value⟩ to the /Pages dictionary. It is always stored globally. The
content is written to the pdf at the end of the compilation, so values can be added,
changed or removed until then. ⟨name⟩ should be a valid pdf name without the leading
slash, ⟨value⟩ should be a valid pdf value. Any escaping or (re)encoding must be done
explicitly. Some backends expand the value but this should not be relied on. If a ⟨name⟩
is used twice, only the last ⟨value⟩ set will be used.

pdfmanagement: Pages

1.2.3 “ Page” and “ ThisPage”

\pdfmanagement_add:nnn {Page} {⟨name⟩} {⟨value⟩}

Values added with the path Page are added to the page dictionary of the current page and
the following pages. The current page means the page on which the command is executed.
⟨name⟩ should be a valid pdf name without the leading slash. Typical names used here
are e.g. Rotate and CropBox. ⟨value⟩ should be a valid pdf value. Any escaping or
(re)encoding must be done explicitly. Some backends expand the value but this should
not be relied on. To avoid problems with the asynchronous page breaking the command
should be used after \newpage or in the header. It should not be used in a float, as it
will then quite probably be executed on the wrong page. The value is assigned directly
and is always stored globally. If a ⟨name⟩ is used twice, only the last ⟨value⟩ set will
be used. Names set with \pdfmanagement_add:nnn{ThisPage} will overwrite names set
with \pdfmanagement_add:nnn{Page} if there is a clash. Values can be removed again
with \pdfmanagement_remove:nn. This replaces \pdfpageattr.

pdfmanagement: Page

New: 2020-04-12

\pdfmanagement_add:nnn {ThisPage} {⟨name⟩} {⟨value⟩}

Adds /⟨name⟩ ⟨value⟩ at shipout to the page dictionary of the current page. Current page
means here the shipout page. shipout means at the end of the shipout/background hook.
Code that wants to set a value in a shipout hook should use the shipout/background
hook too. Other hooks are either too early or too late. It is always stored globally. If
{⟨name⟩} has already a value set in the Page dictionary it will be overwritten for this
page. ⟨name⟩ should be a valid pdf name without the leading slash, ⟨value⟩ should be
a valid pdf value. Any escaping or (re)encoding must be done explicitly. If a ⟨name⟩ is
used twice, only the last ⟨value⟩ set will be used. With the engine pdflatex (at least) a
second compilation is needed. Values added to ThisPage can not be removed. It is not
possible to show the content of this dictionary with \pdfmanagement_show:n.

pdfmanagement: ThisPage

New: 2020-04-12

Changing the /MediaBox : It is possible to change the /MediaBox of one or more
pages by setting it for the Page or ThisPage path (using Pages doesn’t work, the engines
overwrite this)—this works even with dvips and allows to create pages of different sizes.
But you must be careful with the values. If you set e.g. with pdflatex \pdfpageheight

5

to 300bp you get a mediabox of 0 0 595 300, but pdflatex measure from the top and
will also move the reference point up, so effectively you get the upper third of the page.
If you set the /MediaBox to 0 0 595 300 with \pdfmanagement_add:nnn you get the
lower third. In general it is better to use only the primitive commands to avoid confusing
results.

1.2.4 “ Page/Resources”: ExtGState, ColorSpace, Shading, Pattern

\pdfmanagement_add:nnn {Page/Resources/⟨resource⟩} {⟨name⟩} {⟨value⟩}pdfmanagement: Page/Resources/ExtGState
pdfmanagement: Page/Resources/ColorSpace
pdfmanagement: Page/Resources/Shading
pdfmanagement: Page/Resources/Pattern

Updated: 2020-04-10

Adds /⟨name⟩ ⟨value⟩ to the page resource ⟨resource⟩. ⟨resource⟩ can be ExtGState,
ColorSpace, Pattern or Shading. The values are always stored globally. The content
is written to the pdf at the end of the compilation, so values can be added until then.
⟨name⟩ should be a valid pdf name without the leading slash, ⟨value⟩ should be a valid
pdf value for the resource. Any escaping or (re)encoding must be done explicitly. If a
⟨name⟩ is used twice, only the last ⟨value⟩ set will be used.

With the dvips backend the command does nothing: these resources are managed
by ghostscript or the distiller if e. g. transparency is used.

The resources are added to all pages starting with the first where something has
been added to a resources. That means that for example all ExtGState resources are
combined in one dictionary object and every page with a ExtGState resource refer to
this object 2.

☡ The primitive commands (e.g. \pdfpageresources) to set the resources should not be
used together with this code as the calls will overwrite each other and values will be
lost. This means that currently there are clashes with the packages tikz, transparent and
colorspace.

1.2.5 “ Catalog” & subdirectories

The catalog is a central dictionary in a PDF with a number of subdictionaries. Entries
to the top level of the catalog can be added with
\pdfmanagement_add:nnn {Catalog}{⟨Name⟩}{⟨Value⟩}. Entries to subdictionaries by
using in the first argument one of the paths described later. The entries in the catalog
have varying requirements regarding the PDF management. Some entries (like /Lang) are
simple values where new values should overwrite existing values, other like for example
/OutputIntents can contain a number of values and can be filled from more than one
source. In some cases the values that needs to be added are not at the top-level but in
some subsubdictionary or are actually part of an array. To handle the pdf management
uses a variety of internal, special handlers.

☡ In some cases entries are added implicitly. For example entries to the name tree of
the /EmbeddedFiles key in the /Names directory are added with the commands of the
l3pdffile module. This clashes with e.g. the embedfile package which should not be
used!

2This is similar to how pgf handles this resources

6

Entries at the top level of the catalog The Names in the following tabular are
entries that are added to the top level of the catalog.

If ⟨Name⟩ gets assigned a value more than once the last one wins. There is no check
that the values have the correct type and format. It is up to the user to ensure that the
value does what is intended.

The required PDF version is only mentioned if it is larger than 1.5.
Example: \pdfmanagement_add:nnn {Catalog}{PageMode}{/UseNone}

Name Value Remark
Collection objref or dict the content should be build by

external packages (see eg embedfile)
DPartRoot objref or dict PDF 2.0
Lang string e.g. (de-DE)
Legal objref or dict
Metadata objref or stream
NeedsRendering boolean PDF 1.7
OpenAction array (dest) or dict (action)
PageLabels objref or dict number tree
PageLayout name one of /SinglePage, /OneColumn,

/TwoColumnLeft,
/TwoColumnRight, /TwoPageLeft,
/TwoPageRight

PageMode name one of /UseNone, /UseOutlines,
/UseThumbs, /UseOC,
/UseAttachments (PDF 1.6)

Perms objref or dict permissions
PieceInfo objref or dict
SpiderInfo objref or dict
StructTreeRoot objref or dict
Threads objref to an array
URI objref or dict
Version name eg. /1.7
⟨unknown⟩ an unknown ⟨name⟩ will be inserted

without a warning.

Simple entries in subdictionaries of the catalog The following resource paths
have been predeclared and allow to add values to the respective subdictionaries of the
catalog. The names of the dictionaries follow the naming and location of the dictionaries
in the PDF reference. If ⟨Name⟩ gets assigned two values the last one wins.

Example: \pdfmanagement_add:nnn {Catalog/MarkInfo}{Marked}{true}

7

Path/dictionary Names Value Remark
Catalog/AA WC, WS, DS, WP,DP all dict
Catalog/AcroForm NeedAppearances boolean In pdf 2.0

NeedAp­
pearances
is depre­
cated, it
is then
required
that
every
widget
has an
appear­
ance
streams.

SigFlags Integer
DA String
Q Integer
XFA stream or array pdf 1.5

Catalog/AcroForm/DR ⟨name⟩ probably
unneeded

Catalog/AcroForm/DR/Font ⟨name⟩ dict
Catalog/MarkInfo Marked boolean

UserProperties boolean
Suspects boolean

Catalog/ViewerPreferences HideToolbar boolean
Direction /R2L or /L2R
… many

more, see
the
reference

Catalog entries with multiple values in arrays The following entries are special:
Their values are arrays and it must be possible to append to such arrays. This means
that a new call to set this value doesn’t replace the value but appends it. The value is
an object reference. It is sensible to declare the object first. E.g.

 \pdf_object_new:n {module/intent}
 \pdf_object_write:nnn {module/intent}{dict}{...}
 \pdfmanagement_add:nne {Catalog} {OutputIntents}{\pdf_object_ref:n {module/intent}}

or

 \pdf_object_unnamed_write:nn {dict} { ... }
 \pdfmanagement_add:nne {Catalog} {OutputIntents}{\pdf_object_ref_last:}

8

Path/dictionary Name Value Remark
Catalog/AcroForm Fields object reference
Catalog/AcroForm CO object reference
Catalog AF object reference PDF 2.0, associated

files
Catalog/OCProperties OCGs object reference if there are

OCProperties, OCGs
and D are required.

Catalog/OCProperties Configs object reference
Catalog/OCProperties D object reference This is actually a single

value as there can be
only one default. If the
value is set twice, the
second wins, and the
first is added to
OCProperties/Configs.

Catalog OutputIntents object reference
Catalog Requirements object reference PDF 1.7
Catalog/Names EmbeddedFiles object reference This should reference a

filespec dictionary. It
will attach the file to
the file panel.

Catalog entries for name trees Not supported in the dvips backend, pdfmark doesn’t
have an interface here.

In various places the PDF format allows to reference objects by name instead of by
object reference. The relationship between a name and the object reference are store in
so-called name trees, which are stored in the Catalog/Names dictionary. The /Dests and
the /EmbeddedFiles name trees are handled implicitly if destinations or files are added.
Names to the other name trees can be added with \pdfmanagement_add:nnn, e.g. to
add an value to the AP names (for appearance streams) use

\pdfmanagement_add:nne { Catalog / Names / AP } {myAPname} {\pdf_object_ref_last:}

Remarks:

• The name myAPname is processed through \pdf_string_from_unicode:nnN{utf8/string}
and parentheses are added automatically. Ensure that the use of the name handles
it in the same way.

• It is currently not possible to test if a name has already been used by another
package or previous code, so use names where you can be confident that they are
unique. (It would be possible to split up the first part and test, but it would slow
down the compilation and I’m not sure if it is worth the trouble)

• The value is not preprocessed, it is up-to-you to ensure that it does the right thing.

• Currently the structure of the name tree is flat, it doesn’t use Kids. But this can
be changed if the need arise.

9

The following name trees can be filled with this method. Currently only the first
three are activated. For the first, EmbeddedFiles there are two methods to add a value:
\pdfmanagement_add:nnn{Catalog/Names/EmbeddedFiles}{name}{reference} and \pdfmanagement_add:nnn{Catalog/Names}{EmbeddedFiles}{reference}.
This is intended, the second methods creates a name on the fly (with the prefix l3ef)

Catalog/Names/EmbeddedFiles A name tree mapping name strings to file specifications for embedded file streams. The value should be a reference to a filespec dictionary
Catalog/Names/AP A name tree mapping name strings to annotation appearance streams
Catalog/Names/JavaScript A name tree mapping name strings to documentlevel ECMAScript actions
(inactive) Catalog/Names/Pages A name tree mapping name strings to visible pages for use in interactive forms
(inactive) Catalog/Names/Templates A name tree mapping name strings to invisible pages for use in interactive forms
(inactive) Catalog/Names/IDS A name tree mapping digital identifiers to Web.Capture content sets
(inactive) Catalog/Names/URLS A name tree mapping name strings to documentlevel ECMAScript actions
(inactive) Catalog/Names/Renditions A name tree mapping name strings (which shall have Unicode encoding) to rendition objects (it is not quite clear yet, what unicode encoding means here. Perhaps this string will need special handling)

2 l3pdfmanagement implementation
 1 ⟨@@=pdfmanagement⟩
 2 ⟨∗header⟩
 3 %
 4 \ProvidesExplPackage{l3pdfmanagement}{2026-01-23}{0.96y}
 5 {Management of core PDF dictionaries (LaTeX PDF management bundle)}
 6 ⟨/header⟩

2.1 Messages
 7 ⟨∗package⟩
 8 \msg_new:nnn { pdfmanagement } { unknown-dict }
 9 { The~PDF~management~resource~'#1'~is~unknown. }
 10
 11 \msg_new:nnn { pdfmanagement } { empty-value }
 12 { The~value~for~#1~is~empty~and~will~be~ignored }
 13
 14 \msg_new:nnn { pdfmanagement } { no-removal }
 15 { It~is~not~possible~to~remove~values~from~'#1'.}
 16
 17 \msg_new:nnn { pdfmanagement } { no-show }
 18 { It~is~not~possible~to~show~the~content~of~'#1'.}
 19
 20 \msg_new:nnn { pdfmanagement } { name-exist }
 21 { The~name~'#1'~has~already~been~used~for~name~tree~'#2'.}
 22
 23 \msg_new:nnn { pdfmanagement } { show-dict }
 24 {
 25 The~PDF~resource~'#1'~
 26 \tl_if_empty:nTF {#2}
 27 { is~empty \\>~ . }
 28 { contains~the~pairs~(without~outer~braces): #2 . }
 29 }
 30 \msg_new:nnn { pdfmanagement } { dict-already-defined }
 31 {
 32 The~path~'#1'~is~already~defined.
 33 }
 34 \msg_new:nnn { pdfmanagement } { inactive }

10

 35 {
 36 The~PDF~resources~management~is~not~active\\
 37 command~'#1'~ignored.
 38 }

\l__pdfmanagement_tmpa_tl
\l__pdfmanagement_tmpb_tl

\l__pdfmanagement_tmpa_seq

Some temp variables
 39 \tl_new:N \l__pdfmanagement_tmpa_tl
 40 \tl_new:N \l__pdfmanagement_tmpb_tl
 41 \seq_new:N \l__pdfmanagement_tmpa_seq

(End of definition for \l__pdfmanagement_tmpa_tl , \l__pdfmanagement_tmpb_tl , and \l__pdfmanagement_­
tmpa_seq.)

\g__pdfmanagement_active_bool This boolean will controlled the activation of the management code. It is now a noop
and always true.

 42 \bool_new:N \g__pdfmanagement_active_bool
 43 \bool_gset_true:N \g__pdfmanagement_active_bool

(End of definition for \g__pdfmanagement_active_bool.)

A user predicate to test if the management code is active
 44 \prg_new_conditional:Npnn __pdfmanagement_if_active: { p , T , F , TF }
 45 {
 46 \prg_return_true:
 47 }
 48 \prg_set_eq_conditional:NNn
 49 \pdfmanagement_if_active: __pdfmanagement_if_active: { p , T , F , TF }
 50
 51 \cs_set_eq:NN \IfPDFManagementActiveTF\use_i:nn

We use a hook, to collect value added before the backend is ready.
 52 \hook_new:n {pdfmanagement/add}
 53 \cs_new_protected:Npn \pdfmanagement_add:nnn #1 #2 #3
 54 {
 55 \pdfdict_if_exist:nTF { g__pdf_Core/#1 }
 56 {
 57 \hook_gput_code:nnn
 58 {pdfmanagement/add}
 59 {pdfmanagement}
 60 {
 61 __pdfmanagement_handler_gput:nnn { #1 }{ #2 }{ #3 }
 62 }
 63 }
 64 {
 65 \msg_error:nnn{pdfmanagement}{unknown-dict}{#1}
 66 }
 67 }
 68
 69 \cs_generate_variant:Nn \pdfmanagement_add:nnn {nne,nee,eee,nnx,nxx,xxx}
 70 \cs_set_eq:NN \PDFManagementAdd \pdfmanagement_add:eee

2.2 Hooks – shipout and end of run code
Code is executed in three places: At shipout of every page, at shipout of the last page,
at the end of the document (after the last clearpage). Due to backend differences the

11

code in the three places (and the exact timing) can be different: pdflatex/lualatex can
execute code after the last \clearpage which the dvi-based drivers have to add on a
shipout page.

\g__kernel_pdfmanagement_thispage_shipout_code_tl \g__kernel_pdfmanagement_lastpage_shipout_code_tl \g__kernel_pdfmanagement_end_run_code_tl This variables contain the code run in the three places.

 71 \tl_new:N \g__kernel_pdfmanagement_thispage_shipout_code_tl
 72 \tl_new:N \g__kernel_pdfmanagement_lastpage_shipout_code_tl
 73 \tl_new:N \g__kernel_pdfmanagement_end_run_code_tl

(End of definition for \g__kernel_pdfmanagement_thispage_shipout_code_tl \g__kernel_pdfmanagement_­
lastpage_shipout_code_tl \g__kernel_pdfmanagement_end_run_code_tl.)

 74 \tl_gset:Nn \g__kernel_pdfmanagement_thispage_shipout_code_tl
 75 {
 76 \exp_args:NV __pdf_backend_ThisPage_gpush:n { \g_shipout_readonly_int }
 77 \exp_args:NV __pdf_backend_PageResources_gpush:n { \g_shipout_readonly_int }
 78 }
 79
 80 \tl_gset:Nn \g__kernel_pdfmanagement_end_run_code_tl
 81 {
 82 __pdf_backend_PageResources_obj_gpush: %ExtGState etc
 83 __pdfmanagement_Pages_gpush: %pagesattr
 84 __pdfmanagement_Info_gpush: %pdfinfo
 85 __pdfmanagement_Catalog_gpush:
 86 }

2.3 Naming convention
Currently the following names are used: All have internally additionally a Core before
the slash, to hide the real name a bit.

 /Info % (\pdfinfo)
 /Catalog % (\pdfcatalog)
 /Catalog/AA %
 /Catalog/AcroForm
 /Catalog/OCProperties
 /Catalog/OutputIntents
 /Catalog/AcroForm/DR
 /Catalog/AcroForm/DR/Font
 /Catalog/MarkInfo
 /Catalog/ViewerPreferences
 /Pages % (\pagesattr)
 /Page % (\pageattr)
 /ThisPage % (\pageattr)
 /backend_PageN/Resources/Properties % this is only internal.
 /Page/Resources/ExtGState
 /Page/Resources/ColorSpace
 /Page/Resources/Pattern
 /Page/Resources/Shading
 /Page/Resources/Properties
 /Xform/Resources/Properties

12

__pdfmanagement_handler_gput:nnn
__pdfmanagement_get:nnN

__pdfmanagement_gremove:nn
__pdfmanagement_show:n

__pdfmanagement_handler_gput:nnn is the main command to fill the dictionaries. In
simple cases it directly fill the property list, but if a handler exists this is called. It is
important to use it only in places where this make sense.

 87 %global
 88 \cs_new_protected:Npn __pdfmanagement_handler_gput:nnn #1 #2 #3 %#1 dict, #2 name, #3 value
 89 {
 90 \tl_if_empty:nTF { #3 }
 91 {
 92 \msg_none:nnn { pdfmanagement }{ empty-value }{ /#1/#2 }
 93 }
 94 {
 95 \pdfdict_if_exist:nTF { g__pdf_Core/#1 }
 96 {
 97 \cs_if_exist:cTF
 98 { __pdfmanagement_handler/#1/?_gput:nn } %general, name independent handler
 99 { \use:c {__pdfmanagement_handler/#1/?_gput:nn} {#2} {#3} }
100 {
101 \cs_if_exist:cTF
102 { __pdfmanagement_handler/#1/#2_gput:n }
103 { \use:c {__pdfmanagement_handler/#1/#2_gput:n} {#3} } %special handler
104 {
105 \exp_args:Nne
106 \prop_gput:cnn
107 { __kernel_pdfdict_name:n { g__pdf_Core/#1 } }
108 { \str_convert_pdfname:n { #2 } }
109 { #3 }
110 }
111 }
112 }
113 {
114 \msg_error:nnn { pdfmanagement } { unknown-dict } { #1 }
115 }
116 }
117 }
118
119
120 \cs_generate_variant:Nn __pdfmanagement_handler_gput:nnn {nee}
121
122 \cs_new_protected:Npn __pdfmanagement_get:nnN #1 #2 #3 %path,key,macro
123 {
124 \exp_args:Nne
125 \prop_get:cnN
126 { __kernel_pdfdict_name:n { g__pdf_Core/#1 } }
127 { \str_convert_pdfname:n {#2} } #3
128 }
129
130
131 \cs_new_protected:Npn __pdfmanagement_handler_gremove:nn #1 #2 %path,key
132 {
133 \pdfdict_if_exist:nTF { g__pdf_Core/#1 }
134 {
135 \cs_if_exist:cTF
136 { __pdfmanagement_handler/#1/?_gremove:n } %general, name independent handler

13

137 { \use:c {__pdfmanagement_handler/#1/?_gremove:n} {#2} }
138 {
139 \cs_if_exist:cTF
140 { __pdfmanagement_handler/#1/#2_gremove: }
141 { \use:c {__pdfmanagement_handler/#1/#2_gremove:} } %special handler
142 {
143 \exp_args:Nne
144 \prop_gremove:cn
145 { __kernel_pdfdict_name:n { g__pdf_Core/#1 } }
146 { \str_convert_pdfname:n {#2} }
147 }
148 }
149 }
150 {
151 \msg_error:nnn { pdfmanagement } { unknown-dict } { #1 }
152 }
153 }
154
155 \cs_new_protected:Npn __pdfmanagement_gremove:nn #1 #2 %path,key
156 {
157 \pdfdict_if_exist:nTF { g__pdf_Core/#1 }
158 {
159 \exp_args:Nne
160 \prop_gremove:cn
161 { __kernel_pdfdict_name:n { g__pdf_Core/#1 } }
162 { \str_convert_pdfname:n{#2} }
163 }
164 {
165 \msg_error:nnn { pdfmanagement } { unknown-dict } { #1 }
166 }
167 }
168
169
170 \cs_new_protected:Npn __pdfmanagement_show:Nn #1#2
171 {
172 \cs_if_exist:cTF
173 { __pdfmanagement_handler/#2/?_show: } %general, name independent handler
174 { \use:c {__pdfmanagement_handler/#2/?_show:} }
175 {
176 \prop_if_exist:cTF { __kernel_pdfdict_name:n { g__pdf_Core/#2 } }
177 {
178 #1
179 { pdfmanagement } { show-dict }
180 { \tl_to_str:n {#2} }
181 {
182 \prop_map_function:cN
183 {__kernel_pdfdict_name:n { g__pdf_Core/#2 }}
184 \msg_show_item:nn
185 }
186 { } { }
187 }
188 {
189 #1 { pdfmanagement } { unknown-dict } {#2}{}{}{}
190 }

14

191 }
192 }
193
194 \cs_new_protected:Npn __pdfmanagement_show:n #1 %path
195 {
196 \prop_show:c { __kernel_pdfdict_name:n { g__pdf_Core/#1 } }
197 }

(End of definition for __pdfmanagement_handler_gput:nnn and others.)

198 \cs_new_protected:Npn \pdfmanagement_show:n #1
199 {
200 __pdfmanagement_show:Nn \msg_show:nneeee {#1}
201 }

202 \cs_new_protected:Npn \pdfmanagement_remove:nn #1 #2
203 {
204 \pdfdict_if_exist:nTF { g__pdf_Core/#1 }
205 {
206 __pdfmanagement_handler_gremove:nn { #1 }{ #2 }
207 }
208 {
209 \msg_error:nnn{pdfmanagement}{unknown-dict}{#1}
210 }
211 }

212 \cs_new_protected:Npn \pdfmanagement_get:nnN #1 #2 #3
213 {
214 \pdfdict_if_exist:nTF { g__pdf_Core/#1 }
215 {
216 __pdfmanagement_get:nnN { #1 }{ #2 } #3
217 }
218 {
219 \msg_error:nnn{pdfmanagement}{unknown-dict}{#1}
220 }
221 }

2.4 The Info dictionary
Initialization of the dictionary:

222 \pdfdict_new:n { g__pdf_Core/Info}

__pdfmanagement_Info_gpush: __pdfmanagement_Info_gpush: is the command that outputs the info dictionary (cur­
rently in the end-of-run hooks).

223 % push to the register command / issue the special
224 \cs_new_protected:Npn __pdfmanagement_Info_gpush:
225 {
226 \prop_map_function:cN
227 { __kernel_pdfdict_name:n { g__pdf_Core/Info} }
228 __pdf_backend_info_gput:nn
229 \prop_gclear:c { __kernel_pdfdict_name:n { g__pdf_Core/Info} }
230 }

(End of definition for __pdfmanagement_Info_gpush:.)

15

2.5 The Pages dictionary code
At first the initialisation

231 \pdfdict_new:n { g__pdf_Core/Pages}

__pdfmanagement_Pages_gpush: This is the command that outputs the Pages dictionary. It is used at the end of the
document in \g__pdf_backend_end_run_tl

232 % push to the register command / issue the special
233 \cs_new_protected:Npn __pdfmanagement_Pages_gpush:
234 {
235 \pdfdict_if_empty:nF { g__pdf_Core/Pages}
236 {
237 \exp_args:Ne __pdf_backend_Pages_primitive:n
238 {
239 \pdfdict_use:n { g__pdf_Core/Pages}
240 }
241 }
242 }
243

(End of definition for __pdfmanagement_Pages_gpush:.)

2.6 The Page and ThisPage dictionary
At first the initialisation.

244 \pdfdict_new:n { g__pdf_Core/Page }
245 \pdfdict_new:n { g__pdf_Core/ThisPage }
246
247 %handler for pdfmanagement
248 \cs_new_protected:cpn { __pdfmanagement_handler/Page/?_gput:nn } #1 #2
249 {
250 __pdf_backend_Page_gput:nn { #1 }{ #2 }
251 }
252 % remove:
253 \cs_new_protected:cpn { __pdfmanagement_handler/Page/?_gremove:n } #1
254 {
255 __pdf_backend_Page_gremove:n { #1 }
256 }
257
258 % handler for pdfmanagement
259 \cs_new_protected:cpn { __pdfmanagement_handler/ThisPage/?_gput:nn } #1 #2
260 {
261 \prop_gput:cnn { __kernel_pdfdict_name:n { g__pdf_Core/ThisPage } }{ #1 } { #2 }
262 __pdf_backend_ThisPage_gput:nn { #1 }{ #2 }
263 }
264
265 \cs_new_protected:cpn { __pdfmanagement_handler/ThisPage/?_gremove:n } #1
266 {
267 \msg_warning:nnn { pdfmanagement } { no-removal }{ThisPage}
268 }
269
270 \cs_new_protected:cpn { __pdfmanagement_handler/ThisPage/?_show: }

16

271 {
272 \msg_warning:nnn { pdfmanagement } { no-show }{ThisPage}
273 }
274

2.6.1 “ Page/Resources”: ExtGState, ColorSpace, Shading, Pattern

275 \clist_const:Nn \c__pdfmanagement_PageResources_clist
276 {
277 ExtGState,
278 ColorSpace,
279 Pattern,
280 Shading,
281 }
282
283 \clist_map_inline:Nn \c__pdfmanagement_PageResources_clist
284 {
285 \pdfdict_new:n { g__pdf_Core/Page/Resources/#1}
286 }
287 %
288 % setter: #1 is the name of the resource
289 \cs_new_protected:cpn { __pdfmanagement_handler/Page/Resources/ExtGState/?_gput:nn } #1 #2
290 {
291 __pdf_backend_PageResources_gput:nnn {ExtGState} { #1 }{ #2 }
292 }
293
294 \cs_new_protected:cpn { __pdfmanagement_handler/Page/Resources/ColorSpace/?_gput:nn } #1 #2
295 {
296 __pdf_backend_PageResources_gput:nnn {ColorSpace} { #1 }{ #2 }
297 }
298
299 \cs_new_protected:cpn { __pdfmanagement_handler/Page/Resources/Shading/?_gput:nn } #1 #2
300 {
301 __pdf_backend_PageResources_gput:nnn {Shading} { #1 }{ #2 }
302 }
303
304 \cs_new_protected:cpn { __pdfmanagement_handler/Page/Resources/Pattern/?_gput:nn } #1 #2
305 {
306 __pdf_backend_PageResources_gput:nnn {Pattern} { #1 }{ #2 }
307 }

2.6.2 “ Catalog”

The catalog has mixed entries: toplevel, subdictionaries, and entries which must build
arrays.

\c__pdfmanagement_Catalog_toplevel_clist
\c__pdfmanagement_Catalog_sub_clist
\c__pdfmanagement_Catalog_seq_clist

This variables hold the list of the various types of entries. With it the various _gput
commands are generated.
(End of definition for \c__pdfmanagement_Catalog_toplevel_clist , \c__pdfmanagement_Catalog_sub_­
clist , and \c__pdfmanagement_Catalog_seq_clist.)

__pdfmanagement_catalog_XX_gput:n Various commands to handle subentries and special cases. At first we set up a few lists
of the various types.

17

308 \pdfdict_new:n { g__pdf_Core/Catalog}
309
310 \clist_const:Nn \c__pdfmanagement_Catalog_toplevel_clist
311 {
312 Collection,
313 DPartRoot,
314 Lang,
315 Legal,
316 Metadata,
317 NeedsRendering,
318 OCProperties/D,
319 OpenAction,
320 PageLabels,
321 PageLayout,
322 PageMode,
323 Perms,
324 PieceInfo,
325 SpiderInfo,
326 StructTreeRoot,
327 Threads,
328 URI,
329 Version
330 }
331
332 \clist_const:Nn \c__pdfmanagement_Catalog_sub_clist
333 {
334 AA,
335 AcroForm,
336 AcroForm/DR,
337 AcroForm/DR/Font,
338 MarkInfo,
339 ViewerPreferences,
340 OCProperties
341 }
342
343 \clist_map_inline:Nn \c__pdfmanagement_Catalog_sub_clist
344 {
345 \pdfdict_new:n { g__pdf_Core/Catalog/#1}
346 }
347
348
349 \clist_const:Nn \c__pdfmanagement_Catalog_seq_clist
350 {
351 AF,
352 OCProperties/OCGs,
353 OCProperties/Configs,
354 OutputIntents,
355 Requirements,
356 AcroForm/Fields,
357 AcroForm/CO
358 }
359

Names trees in Catalog/Names. We prepare the full list but activate only AP and

18

JavaScript for now. /EmbeddedFiles has special code and so is not in the name list.

360 \clist_const:Nn \c__pdfmanagement_Catalog_nametree_clist
361 {
362 AP,
363 JavaScript,
364 % Pages,
365 % Templates,
366 % IDS,
367 % URLS,
368 % Renditions
369 }

now we create the handler. The entries in the seq-list store in a seq

370 \clist_map_inline:Nn \c__pdfmanagement_Catalog_seq_clist
371 {
372 \seq_new:c { g__pdfmanagement_/Catalog/#1_seq } % new name later
373 \cs_new_protected:cpn { __pdfmanagement_handler/Catalog/#1_gput:n } ##1
374 {
375 \seq_gput_right:cn { g__pdfmanagement_/Catalog/#1_seq } { ##1 }
376 }
377 }
378

OCProperties/D is special: it handles a default. This is done by adding to the left of the
seq

379 \cs_new_protected:cpn { __pdfmanagement_handler/Catalog/OCProperties/D_gput:n } #1
380 {
381 \seq_gput_left:cn
382 { g__pdfmanagement_/Catalog/OCProperties/Configs_seq }
383 { #1 }
384 }

The name tree keys store in a property and check for duplicates. This is done with an
auxiliary.

385 \cs_new_protected:Npn __pdfmanagement_nametree_add_aux:nnn #1 #2 #3
386 %#1 name tree, #2 sanitized name #3 value
387 {
388 \prop_get:coNTF
389 { __kernel_pdfdict_name:n { g__pdf_Core/Catalog/Names/#1 }}
390 { #2 }
391 \l__pdfmanagement_tmpb_tl
392 {
393 \msg_error:nnnn{pdfmanagement}{name-exist}{#2}{#1}
394 }
395 {
396 \prop_gput:con
397 { __kernel_pdfdict_name:n { g__pdf_Core/Catalog/Names/#1 }}
398 { #2 }
399 { #3 }
400 }
401 }

19

This is the standard handler for most names trees:

402 \clist_map_inline:Nn \c__pdfmanagement_Catalog_nametree_clist
403 {
404 \pdfdict_new:n { g__pdf_Core/Catalog/Names/#1}
405 \cs_new_protected:cpn { __pdfmanagement_handler/Catalog/Names/#1/?_gput:nn } ##1 ##2
406 {
407 \pdf_string_from_unicode:nnN {utf8/string}{##1}\l__pdfmanagement_tmpa_tl
408 \exp_args:Nno
409 __pdfmanagement_nametree_add_aux:nnn {#1}{\l__pdfmanagement_tmpa_tl}{##2}
410 }
411 }

EmbeddedFiles is a bit special. For once there is special backend code needed by dvips.
Beside this we also want the option to create the file name on the fly, so they are actually
two access methods: \pdfmanagement_add:nnn{Catalog/Names/EmbeddedFiles}{name}{reference}
and \pdfmanagement_add:nnn{Catalog/Names}{EmbeddedFiles}{reference}

412 \pdfdict_new:n { g__pdf_Core/Catalog/Names/EmbeddedFiles}
413 \cs_new_protected:cpn { __pdfmanagement_handler/Catalog/Names/EmbeddedFiles/?_gput:nn } #1 #2
414 {
415 \pdf_string_from_unicode:nnN {utf8/string}{#1}\l__pdfmanagement_tmpa_tl
416 \exp_args:Nno
417 __pdfmanagement_nametree_add_aux:nnn
418 {EmbeddedFiles}{\l__pdfmanagement_tmpa_tl}{#2}
419 \exp_args:No
420 __pdf_backend_NamesEmbeddedFiles_add:nn {\l__pdfmanagement_tmpa_tl}{#2}
421 }

(End of definition for __pdfmanagement_catalog_XX_gput:n.)

Building the catalog: Push order

__pdfmanagement_Catalog_gpush:

422 \cs_new_protected:Npn __pdfmanagement_Catalog_gpush:
423 {
424 \use:c { __pdfmanagement_/Catalog/AA_gpush: }
425 \use:c { __pdfmanagement_/Catalog/AcroForm_gpush: }
426 \use:c { __pdfmanagement_/Catalog/AF_gpush: }
427 \use:c { __pdfmanagement_/Catalog/MarkInfo_gpush: }
428 \pdfmeta_standard_verify:nT {Catalog_no_OCProperties}
429 {
430 \use:c { __pdfmanagement_/Catalog/OCProperties_gpush: }
431 }
432 \use:c { __pdfmanagement_/Catalog/OutputIntents_gpush: }
433 \use:c { __pdfmanagement_/Catalog/Requirements_gpush: }
434 \use:c { __pdfmanagement_/Catalog/ViewerPreferences_gpush: }
435 % output the single values:
436 \prop_map_function:cN
437 { __kernel_pdfdict_name:n { g__pdf_Core/Catalog} }
438 __pdf_backend_catalog_gput:nn
439 % output names tree:
440 \use:c{ __pdfmanagement_/Catalog/Names_gpush:n } {EmbeddedFiles}

20

441 \clist_map_inline:Nn \c__pdfmanagement_Catalog_nametree_clist
442 {
443 \use:c{ __pdfmanagement_/Catalog/Names_gpush:n } {##1}
444 }
445 }

(End of definition for __pdfmanagement_Catalog_gpush:.)

Building catalog entries: AA

__pdfmanagement_/Catalog/AA_gpush:

446 \cs_new_protected:cpn { __pdfmanagement_/Catalog/AA_gpush: }
447 {
448 \prop_if_empty:cF
449 { __kernel_pdfdict_name:n { g__pdf_Core/Catalog/AA } }
450 {
451 \pdf_object_new:n { __pdfmanagement/Catalog/AA }
452 \pdf_object_write:nne
453 { __pdfmanagement/Catalog/AA }{ dict }
454 { \pdfdict_use:n { g__pdf_Core/Catalog/AA } }
455 \exp_args:Nne
456 __pdf_backend_catalog_gput:nn
457 {AA}
458 {
459 \pdf_object_ref:n { __pdfmanagement/Catalog/AA }
460 }
461 }
462 }

(End of definition for __pdfmanagement_/Catalog/AA_gpush:.)

Building catalog entries: AcroForm This is the most complicated case. The entries
is build from /Catalog/AcroForm/Fields (array), /Catalog/AcroForm/CO (array), /Cat­
alog/AcroForm/DR/Font (dict), /Catalog/AcroForm/DR (dict), /Catalog/AcroForm

__pdfmanagement_/Catalog/AcroForm_gpush:

463 \cs_new_protected:cpn { __pdfmanagement_/Catalog/AcroForm_gpush: }
464 {
465 \seq_if_empty:cF { g__pdfmanagement_/Catalog/AcroForm/Fields_seq }
466 {
467 \pdf_object_new:n { __pdfmanagement/Catalog/AcroForm/Fields }
468 \pdf_object_write:nne
469 { __pdfmanagement/Catalog/AcroForm/Fields } { array }
470 { \seq_use:cn { g__pdfmanagement_/Catalog/AcroForm/Fields_seq } {~} }
471 \exp_args:Nnne
472 \prop_gput:cnn %we have to use \prop here to avoid the handler ...
473 { __kernel_pdfdict_name:n { g__pdf_Core/Catalog/AcroForm } }
474 { Fields }
475 { \pdf_object_ref:n { __pdfmanagement/Catalog/AcroForm/Fields } }
476 }
477 \seq_if_empty:cF { g__pdfmanagement_/Catalog/AcroForm/CO_seq }
478 {

21

479 \pdf_object_new:n { __pdfmanagement/Catalog/AcroForm/CO }
480 \pdf_object_write:nne
481 { __pdfmanagement/Catalog/AcroForm/CO } { array }
482 { \seq_use:cn { g__pdfmanagement_/Catalog/AcroForm/CO_seq } {~} }
483 \exp_args:Nnne
484 \prop_gput:cnn %we have to use \prop here to avoid the handler ...
485 { __kernel_pdfdict_name:n { g__pdf_Core/Catalog/AcroForm } }
486 { CO }
487 { \pdf_object_ref:n { __pdfmanagement/Catalog/AcroForm/CO } }
488 }
489 \prop_if_empty:cF { __kernel_pdfdict_name:n { g__pdf_Core/Catalog/AcroForm/DR/Font}}
490 {
491 \pdf_object_new:n { __pdfmanagement/Catalog/AcroForm/DR/Font }
492 \pdf_object_write:nne
493 { __pdfmanagement/Catalog/AcroForm/DR/Font } { dict }
494 { \pdfdict_use:n { g__pdf_Core/Catalog/AcroForm/DR/Font } }
495 \exp_args:Nnne
496 \prop_gput:cnn %we have to use \prop here to avoid the handler ...
497 { __kernel_pdfdict_name:n { g__pdf_Core/Catalog/AcroForm/DR } }
498 { Font }
499 { \pdf_object_ref:n { __pdfmanagement/Catalog/AcroForm/DR/Font } }
500 }
501 \prop_if_empty:cF { __kernel_pdfdict_name:n { g__pdf_Core/Catalog/AcroForm/DR}}
502 {
503 \pdf_object_new:n { __pdfmanagement/Catalog/AcroForm/DR }
504 \pdf_object_write:nne
505 { __pdfmanagement/Catalog/AcroForm/DR } { dict }
506 { \pdfdict_use:n { g__pdf_Core/Catalog/AcroForm/DR } }
507 \exp_args:Nnne
508 \prop_gput:cnn %we have to use \prop here to avoid the handler ...
509 { __kernel_pdfdict_name:n { g__pdf_Core/Catalog/AcroForm } }
510 { DR }
511 { \pdf_object_ref:n { __pdfmanagement/Catalog/AcroForm/DR } }
512 }
513 \prop_if_empty:cF { __kernel_pdfdict_name:n { g__pdf_Core/Catalog/AcroForm} }
514 {
515 \pdf_object_new:n { __pdfmanagement/Catalog/AcroForm }
516 \pdf_object_write:nne
517 { __pdfmanagement/Catalog/AcroForm } { dict }
518 { \pdfdict_use:n { g__pdf_Core/Catalog/AcroForm } }
519 \exp_args:Nnne
520 __pdfmanagement_handler_gput:nnn
521 { Catalog }
522 { AcroForm }
523 { \pdf_object_ref:n { __pdfmanagement/Catalog/AcroForm } }
524 }
525 }
526

(End of definition for __pdfmanagement_/Catalog/AcroForm_gpush:.)

Building catalog entries: AF AF is an array.

__pdfmanagement_/Catalog/AF_gpush:

22

527 \cs_new_protected:cpn { __pdfmanagement_/Catalog/AF_gpush: }
528 {
529 \seq_if_empty:cF
530 { g__pdfmanagement_/Catalog/AF_seq }
531 {
532 \pdf_object_new:n { __pdfmanagement/Catalog/AF }
533 \pdf_object_write:nne
534 { __pdfmanagement/Catalog/AF } { array }
535 { \seq_use:cn { g__pdfmanagement_/Catalog/AF_seq } {~} }
536 \exp_args:Nne
537 __pdf_backend_catalog_gput:nn
538 {AF}
539 {
540 \pdf_object_ref:n {__pdfmanagement/Catalog/AF}
541 }
542 }
543 }

(End of definition for __pdfmanagement_/Catalog/AF_gpush:.)

Building catalog entries: MarkInfo

__pdfmanagement_/Catalog/MarkInfo_gpush:

544 \cs_new_protected:cpn { __pdfmanagement_/Catalog/MarkInfo_gpush: }
545 {
546 \prop_if_empty:cF
547 { __kernel_pdfdict_name:n { g__pdf_Core/Catalog/MarkInfo } }
548 {
549 \pdf_object_new:n { __pdfmanagement/Catalog/MarkInfo }
550 \pdf_object_write:nne
551 { __pdfmanagement/Catalog/MarkInfo } { dict }
552 { \pdfdict_use:n { g__pdf_Core/Catalog/MarkInfo } }
553 \exp_args:Nne
554 __pdf_backend_catalog_gput:nn
555 {MarkInfo}
556 {
557 \pdf_object_ref:n {__pdfmanagement/Catalog/MarkInfo}
558 }
559 }
560 }

(End of definition for __pdfmanagement_/Catalog/MarkInfo_gpush:.)

Building catalog entries: OCProperties This is a dictionary with three entries:

/OCGs (required) An array of indirect references, access needed for more than one
package.

/D (required) a dict (given as an object name) to the default configuration

/Configs (optional) an array of indirect references to more configurations.

The /D entry is also a config, it is the first of the seq. The overall structure is nested: a
dict with arrays.

23

__pdfmanagement_/Catalog/OCProperties_gpush:

561 % Catalog/OCProperties: OCGs + D is required
562 \cs_new_protected:cpn { __pdfmanagement_/Catalog/OCProperties_gpush: }
563 {
564 \int_compare:nNnT
565 {
566 (\seq_count:c { g__pdfmanagement_/Catalog/OCProperties/OCGs_seq })*
567 (\seq_count:c { g__pdfmanagement_/Catalog/OCProperties/Configs_seq })
568 }
569 >
570 { 0 }
571 {
572 \pdf_object_new:n { __pdfmanagement/Catalog/OCProperties }
573 \seq_gpop_left:cN { g__pdfmanagement_/Catalog/OCProperties/Configs_seq} \l__pdfmanagement_tmpa_tl
574 \pdf_object_write:nne {__pdfmanagement/Catalog/OCProperties} {dict}
575 {
576 /OCGs~[\seq_use:cn { g__pdfmanagement_/Catalog/OCProperties/OCGs_seq } {~}]
577 /D~\l__pdfmanagement_tmpa_tl~
578 \seq_if_empty:cF { g__pdfmanagement_/Catalog/OCProperties/Configs_seq }
579 {
580 /Configs~
581 [\seq_use:cn { g__pdfmanagement_/Catalog/OCProperties/Configs_seq} {~}]
582 }
583 }
584 \exp_args:Nne
585 __pdf_backend_catalog_gput:nn
586 { OCProperties }
587 { \pdf_object_ref:n {__pdfmanagement/Catalog/OCProperties} }
588 }
589 }

(End of definition for __pdfmanagement_/Catalog/OCProperties_gpush:.)

Building catalog entries: OutputIntents OutputIntents is an array.

__pdfmanagement_/Catalog/OutputIntents_gpush:

590 \cs_new_protected:cpn { __pdfmanagement_/Catalog/OutputIntents_gpush: }
591 {
592 \seq_if_empty:cF
593 { g__pdfmanagement_/Catalog/OutputIntents_seq }
594 {
595 \pdf_object_new:n { __pdfmanagement/Catalog/OutputIntents }
596 \pdf_object_write:nne
597 { __pdfmanagement/Catalog/OutputIntents } { array }
598 { \seq_use:cn { g__pdfmanagement_/Catalog/OutputIntents_seq } {~} }
599 \exp_args:Nne
600 __pdf_backend_catalog_gput:nn
601 {OutputIntents}
602 {
603 \pdf_object_ref:n {__pdfmanagement/Catalog/OutputIntents}
604 }
605 }
606 }

24

(End of definition for __pdfmanagement_/Catalog/OutputIntents_gpush:.)

Building catalog entries: Requirements Requirements is an array.

__pdfmanagement_/Catalog/Requirements_gpush:

607 \cs_new_protected:cpn { __pdfmanagement_/Catalog/Requirements_gpush: }
608 {
609 \seq_if_empty:cF
610 { g__pdfmanagement_/Catalog/Requirements_seq }
611 {
612 \pdf_object_new:n { __pdfmanagement/Catalog/Requirements }
613 \pdf_object_write:nne
614 { __pdfmanagement/Catalog/Requirements } { array }
615 { \seq_use:cn { g__pdfmanagement_/Catalog/Requirements_seq } {~} }
616 \exp_args:Nne
617 __pdf_backend_catalog_gput:nn
618 {Requirements}
619 {
620 \pdf_object_ref:n { __pdfmanagement/Catalog/Requirements }
621 }
622 }
623 }

(End of definition for __pdfmanagement_/Catalog/Requirements_gpush:.)

Building catalog entries: ViewerPreferences

__pdfmanagement_/Catalog/ViewerPreferences_gpush:

624 \cs_new_protected:cpn { __pdfmanagement_/Catalog/ViewerPreferences_gpush: }
625 {
626 \prop_if_empty:cF
627 { __kernel_pdfdict_name:n { g__pdf_Core/Catalog/ViewerPreferences } }
628 {
629 \pdf_object_new:n { __pdfmanagement/Catalog/ViewerPreferences }
630 \pdf_object_write:nne
631 { __pdfmanagement/Catalog/ViewerPreferences } { dict }
632 { \pdfdict_use:n { g__pdf_Core/Catalog/ViewerPreferences } }
633 \exp_args:Nne
634 __pdf_backend_catalog_gput:nn
635 {ViewerPreferences}
636 {
637 \pdf_object_ref:n {__pdfmanagement/Catalog/ViewerPreferences}
638 }
639 }
640 }

(End of definition for __pdfmanagement_/Catalog/ViewerPreferences_gpush:.)

25

Building catalog entries: Names/EmbeddedFiles

\g__pdfmanagement_EmbeddedFiles_int We want to create names for files on the fly. For this we use an int.

641 \int_new:N \g__pdfmanagement_EmbeddedFiles_int

(End of definition for \g__pdfmanagement_EmbeddedFiles_int.)

__pdfmanagement_EmbeddedFiles_name: We use the prefix l3ef, and pad numbers below 9999.

642 \cs_new:Npn __pdfmanagement_EmbeddedFiles_name:
643 {
644 (
645 l3ef
646 \int_compare:nNnT {\g__pdfmanagement_EmbeddedFiles_int} < {10}
647 {0}
648 \int_compare:nNnT {\g__pdfmanagement_EmbeddedFiles_int} < {100}
649 {0}
650 \int_compare:nNnT {\g__pdfmanagement_EmbeddedFiles_int} < {1000}
651 {0}
652 \int_use:N \g__pdfmanagement_EmbeddedFiles_int
653)
654 }

(End of definition for __pdfmanagement_EmbeddedFiles_name:.)

__pdfmanagement_handler/Catalog/Names/EmbeddedFiles_gput:n EmbeddedFiles is an array and needs a special handler to add values.

655 \pdfdict_new:n { g__pdf_Core/Catalog/Names }
656
657 \cs_new_protected:cpn { __pdfmanagement_handler/Catalog/Names/EmbeddedFiles_gput:n } #1
658 {
659 \int_gincr:N \g__pdfmanagement_EmbeddedFiles_int
660 \exp_args:Nne
661 \prop_gput:cnn
662 { __kernel_pdfdict_name:n { g__pdf_Core/Catalog/Names/EmbeddedFiles }}
663 { __pdfmanagement_EmbeddedFiles_name: }
664 { #1 }
665 \exp_args:Ne
666 __pdf_backend_NamesEmbeddedFiles_add:nn {__pdfmanagement_EmbeddedFiles_name:} { #1 }
667 }

(End of definition for __pdfmanagement_handler/Catalog/Names/EmbeddedFiles_gput:n.)

This pushes out the other names trees (but not with dvips). TODO: currently it simply
write in the root of the name tree. That is the fastest. If they get longer we perhaps
need to build something with Kids and Limits.

__pdfmanagement_/Catalog/Names/?_gpush:

668 \cs_new_protected:cpn { __pdfmanagement_/Catalog/Names_gpush:n } #1 %#1 name of name tree
669 {
670 \pdfdict_if_empty:nF { g__pdf_Core/Catalog/Names/#1 }
671 {
672 \seq_clear:N \l__pdfmanagement_tmpa_seq

26

673 \prop_map_inline:cn
674 {__kernel_pdfdict_name:n { g__pdf_Core/Catalog/Names/#1 }}
675 { \seq_put_right:Nn \l__pdfmanagement_tmpa_seq {##1~##2}}
676 \seq_sort:Nn \l__pdfmanagement_tmpa_seq
677 {
678 \str_compare:nNnTF {##1} > {##2}
679 { \sort_return_swapped: }
680 { \sort_return_same: }
681 }
682 \exp_args:Nne __pdf_backend_Names_gpush:nn
683 {#1}
684 {
685 \seq_use:Nn \l__pdfmanagement_tmpa_seq {~}
686 }
687 }
688 }

(End of definition for __pdfmanagement_/Catalog/Names/?_gpush:.)

__pdfmanagement_handler/Catalog/?_show: A handler to show the catalog.

689 \cs_new_protected:cpn {__pdfmanagement_handler/Catalog/?_show:}
690 {
691 \iow_term:e
692 {
693 \iow_newline:
694 The~Catalog~contains~in~the~top~level~the~single~value~entries
695 \prop_map_function:cN
696 {__kernel_pdfdict_name:n { g__pdf_Core/Catalog }}
697 \msg_show_item:nn
698 }
699 \clist_map_inline:Nn \c__pdfmanagement_Catalog_seq_clist
700 {
701 \seq_if_empty:cF { g__pdfmanagement_/Catalog/##1_seq }
702 {
703 \iow_term:e
704 {
705 The~'##1'~array~contains~the~entries
706 \seq_map_function:cN { g__pdfmanagement_/Catalog/##1_seq } \msg_show_item:n
707 }
708 }
709 }
710 \clist_map_inline:Nn \c__pdfmanagement_Catalog_sub_clist
711 {
712 \prop_if_empty:cF { __kernel_pdfdict_name:n { g__pdf_Core/Catalog/##1 } }
713 {
714 \iow_term:e
715 {
716 The~Catalog~subdirectory~'##1'~contains~the~single~value~entries
717 \prop_map_function:cN
718 {__kernel_pdfdict_name:n { g__pdf_Core/Catalog/##1 }}
719 \msg_show_item:nn
720 }
721 }

27

722 }
723 \tl_show:e {\tl_to_str:n{\pdfmanagement_show:n{Catalog}}}
724 }

(End of definition for __pdfmanagement_handler/Catalog/?_show:.)

2.7 xform / Properties
725 \pdfdict_new:n { g__pdf_Core/Xform/Resources/Properties}

726 ⟨/package⟩

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
\\ . 27, 36

B
bool commands:
 \bool_gset_true:N 43
 \bool_new:N 42

C
\clearpage . 12
clist commands:
 \clist_const:Nn 275, 310, 332, 349, 360
 \clist_map_inline:Nn

. . . . 283, 343, 370, 402, 441, 699, 710
cs commands:
 \cs_generate_variant:Nn 69, 120
 \cs_if_exist:NTF 97, 101, 135, 139, 172
 \cs_new:Npn 642
 \cs_new_protected:Npn 53, 88,

122, 131, 155, 170, 194, 198, 202,
212, 224, 233, 248, 253, 259, 265,
270, 289, 294, 299, 304, 373, 379,
385, 405, 413, 422, 446, 463, 527,
544, 562, 590, 607, 624, 657, 668, 689

 \cs_set_eq:NN 51, 70

E
exp commands:
 \exp_args:Ne 237, 665
 \exp_args:Nne 105, 124, 143, 159, 455,

536, 553, 584, 599, 616, 633, 660, 682
 \exp_args:Nnne . 471, 483, 495, 507, 519
 \exp_args:Nno 408, 416
 \exp_args:No 419
 \exp_args:NV 76, 77

H
hook commands:
 \hook_gput_code:nnn 57
 \hook_new:n 52

I
\IfPDFManagementActiveTF 2, 51
int commands:
 \int_compare:nNnTF 564, 646, 648, 650
 \int_gincr:N 659
 \int_new:N 641
 \int_use:N 652
iow commands:
 \iow_newline: 693
 \iow_term:n 691, 703, 714

K
kernel internal commands:
 __kernel_pdfdict_name:n

. . . . 107, 126, 145, 161, 176, 183,
196, 227, 229, 261, 389, 397, 437,
449, 473, 485, 489, 497, 501, 509,
513, 547, 627, 662, 674, 696, 712, 718

 \g__kernel_pdfmanagement_end_­
run_code_tl 73, 80

 \g__kernel_pdfmanagement_­
lastpage_shipout_code_tl 72

 \g__kernel_pdfmanagement_­
thispage_shipout_code_tl . . 71, 74

 \g__kernel_pdfmanagement_­
thispage_shipout_code_­
tl␣␣␣␣␣␣\g__kernel_pdfmanagement_­
lastpage_shipout_code_­
tl␣␣␣␣␣␣\g__kernel_pdfmanagement_­
end_run_code_tl 71

28

M
msg commands:
 \msg_error:nnn

. 65, 114, 151, 165, 209, 219
 \msg_error:nnnn 393
 \msg_new:nnn 8, 11, 14, 17, 20, 23, 30, 34
 \msg_none:nnn 92
 \msg_show:nnnnnn 200
 \msg_show_item:n 706
 \msg_show_item:nn 184, 697, 719
 \msg_warning:nnn 267, 272

N
\newpage . 5

P
pdf commands:
 \pdf_object_new:n 451, 467, 479, 491,

503, 515, 532, 549, 572, 595, 612, 629
 \pdf_object_ref:n 459, 475, 487, 499,

511, 523, 540, 557, 587, 603, 620, 637
 \pdf_object_write:nnn

. 452, 468, 480, 492,
504, 516, 533, 550, 574, 596, 613, 630

 \pdf_string_from_unicode:nnN 407, 415
pdf internal commands:
 __pdf_backend_catalog_gput:nn .

 438, 456, 537, 554, 585, 600, 617, 634
 \g__pdf_backend_end_run_tl 16
 __pdf_backend_info_gput:nn 228
 __pdf_backend_Names_gpush:nn . . 682
 __pdf_backend_NamesEmbeddedFiles_­

add:nn 420, 666
 __pdf_backend_Page_gput:nn 250
 __pdf_backend_Page_gremove:n . . 255
 __pdf_backend_PageResources_­

gpush:n 77
 __pdf_backend_PageResources_­

gput:nnn 291, 296, 301, 306
 __pdf_backend_PageResources_­

obj_gpush: 82
 __pdf_backend_Pages_primitive:n 237
 __pdf_backend_ThisPage_gpush:n . 76
 __pdf_backend_ThisPage_gput:nn 262
\pdfcatalog . 1, 2
pdfdict commands:
 \pdfdict_if_empty:nTF 235, 670
 \pdfdict_if_exist:nTF

. 55, 95, 133, 157, 204, 214
 \pdfdict_new:n 222, 231, 244,

245, 285, 308, 345, 404, 412, 655, 725
 \pdfdict_use:n

. . . . 239, 454, 494, 506, 518, 552, 632
\pdfinfo . 1, 2

pdfmanagement commands:
 pdfmanagement:Info 4
 pdfmanagement:Page 5
 pdfmanagement:Page/Resources/ColorSpace

. 6
 pdfmanagement:Page/Resources/ExtGState

. 6
 pdfmanagement:Page/Resources/Pattern

. 6
 pdfmanagement:Page/Resources/Shading

. 6
 pdfmanagement:Pages 5
 pdfmanagement:ThisPage 5
 \pdfmanagement_add:nnn 3–6, 53, 69, 70
 \pdfmanagement_get:nnN 212
 \pdfmanagement_if_active: 49
 \pdfmanagement_if_active:TF 2
 \pdfmanagement_if_active_p: 2
 \pdfmanagement_remove:nn . . 3, 5, 202
 \pdfmanagement_show:n . . 3, 5, 198, 723
pdfmanagement internal commands:
 __pdfmanagement_/Catalog/AA_­

gpush: . 446
 __pdfmanagement_/Catalog/AcroForm_­

gpush: . 463
 __pdfmanagement_/Catalog/AF_­

gpush: . 527
 __pdfmanagement_/Catalog/MarkInfo_­

gpush: . 544
 __pdfmanagement_/Catalog/Names/?_­

gpush: . 668
 __pdfmanagement_/Catalog/OCProperties_­

gpush: . 561
 __pdfmanagement_/Catalog/OutputIntents_­

gpush: . 590
 __pdfmanagement_/Catalog/Requirements_­

gpush: . 607
 __pdfmanagement_/Catalog/ViewerPreferences_­

gpush: . 624
 \g__pdfmanagement_active_bool . . . 42
 __pdfmanagement_Catalog_gpush:

. 85, 422, 422
 \c__pdfmanagement_Catalog_­

nametree_clist 360, 402, 441
 \c__pdfmanagement_Catalog_seq_­

clist 308, 349, 370, 699
 \c__pdfmanagement_Catalog_sub_­

clist 308, 332, 343, 710
 \c__pdfmanagement_Catalog_­

toplevel_clist 308, 310
 __pdfmanagement_catalog_XX_­

gput:n . 308
 \g__pdfmanagement_EmbeddedFiles_­

int . . . 641, 646, 648, 650, 652, 659

29

 __pdfmanagement_EmbeddedFiles_­
name: 642, 642, 663, 666

 __pdfmanagement_get:nnN 87, 122, 216
 __pdfmanagement_gremove:nn . 87, 155
 __pdfmanagement_handler/Catalog/?_­

show: . 689
 __pdfmanagement_handler/Catalog/Names/EmbeddedFiles_­

gput:n . 655
 __pdfmanagement_handler_­

gput:nnn . . . 13, 61, 87, 88, 120, 520
 __pdfmanagement_handler_­

gremove:nn 131, 206
 __pdfmanagement_if_active: . . 44, 49
 __pdfmanagement_Info_gpush: . . .

. 15, 84, 223, 224
 __pdfmanagement_nametree_add_­

aux:nnn 385, 409, 417
 \c__pdfmanagement_PageResources_­

clist 275, 283
 __pdfmanagement_Pages_gpush: . .

. 83, 232, 233
 __pdfmanagement_show:n 87, 194
 __pdfmanagement_show:Nn . . 170, 200
 \l__pdfmanagement_tmpa_seq

. 39, 672, 675, 676, 685
 \l__pdfmanagement_tmpa_tl

. 39, 407, 409, 415, 418, 420, 573, 577
 \l__pdfmanagement_tmpb_tl . . 39, 391
\PDFManagementAdd 3, 70
pdfmeta commands:
 \pdfmeta_standard_verify:nTF . . . 428
\pdfpageattr 1, 2, 5
\pdfpageheight . 5
\pdfpageresources 1, 2, 6
\pdfpagesattr 1, 2, 5
prg commands:
 \prg_new_conditional:Npnn 44
 \prg_return_true: 46
 \prg_set_eq_conditional:NNn 48
\prop 472, 484, 496, 508
prop commands:
 \prop_gclear:N 229
 \prop_get:NnN 125
 \prop_get:NnNTF 388
 \prop_gput:Nnn

 106, 261, 396, 472, 484, 496, 508, 661
 \prop_gremove:Nn 144, 160

 \prop_if_empty:NTF
. . . . 448, 489, 501, 513, 546, 626, 712

 \prop_if_exist:NTF 176
 \prop_map_function:NN

. 182, 226, 436, 695, 717
 \prop_map_inline:Nn 673
 \prop_show:N 196
\ProvidesExplPackage 4

S
seq commands:
 \seq_clear:N 672
 \seq_count:N 566, 567
 \seq_gpop_left:NN 573
 \seq_gput_left:Nn 381
 \seq_gput_right:Nn 375
 \seq_if_empty:NTF

. . . . 465, 477, 529, 578, 592, 609, 701
 \seq_map_function:NN 706
 \seq_new:N 41, 372
 \seq_put_right:Nn 675
 \seq_sort:Nn 676
 \seq_use:Nn

 470, 482, 535, 576, 581, 598, 615, 685
shipout commands:
 \g_shipout_readonly_int 76, 77
sort commands:
 \sort_return_same: 680
 \sort_return_swapped: 679
\special . 1
str commands:
 \str_compare:nNnTF 678
 \str_convert_pdfname:n

. 3, 4, 108, 127, 146, 162

T
tl commands:
 \tl_gset:Nn 74, 80
 \tl_if_empty:nTF 26, 90
 \tl_new:N 39, 40, 71, 72, 73
 \tl_show:n 723
 \tl_to_str:n 180, 723

U
use commands:
 \use:N 99, 103, 137, 141, 174, 424, 425,

426, 427, 430, 432, 433, 434, 440, 443
 \use_i:nn . 51

30

	1 l3pdfmanagement documentation
	1.1 User Commands
	1.2 Description of the resource paths
	1.2.1 Info: The Info dictionary
	1.2.2 Pages: The "Pages" dictionary
	1.2.3 "Page" and "ThisPage"
	1.2.4 "Page/Resources": ExtGState, ColorSpace, Shading, Pattern
	1.2.5 "Catalog" & subdirectories

	2 l3pdfmanagement implementation
	2.1 Messages
	2.2 Hooks – shipout and end of run code
	2.3 Naming convention
	2.4 The Info dictionary
	2.5 The Pages dictionary code
	2.6 The Page and ThisPage dictionary
	2.6.1 "Page/Resources": ExtGState, ColorSpace, Shading, Pattern
	2.6.2 "Catalog"

	2.7 xform / Properties

	Index
	Symbols
	B
	C
	E
	H
	I
	K
	M
	N
	P
	S
	T
	U

