
The l3pdfmeta module
PDF standards

LATEX PDF management bundle

The LATEX Project∗

Version 0.96y, released 2026-01-23

1 l3pdfmeta documentation
This module sets up some tools and commands needed for PDF standards in general.
The goal is to collect the requirements and to provide code to check and fulfill them.

1.1 Standard families
A PDF can claim that it complies to more than one standard but always only to one
version of a specific family. For LATEX relevant are the A-, UA- and X-standards.

The l3pdfmeta module started with support for the A-standards, some basic support
for UA- and X-requirements were added in a rather ad-hoc way because there isn’t a
easy way to merge requirements and because a merge loses the option to report for which
standard a requirement failed: if e.g. A-4 requires PDF 2.0 and UA-1 PDF 1.7 it is not
clear what a merge should do.

So instead of merging the requirements the code now keeps track of the requirements
of standard families (currently A, UA and X) and offers a command to switch the family
to enable validation of their requirements. The default family is always the A-family –
it has the largest numbers of requirements and also the largest numbers of requirements
that the code can actually check.

1.2 Verifying requirements of PDF standards
Standards like pdf/A set requirements on a PDF: Some things have be in the PDF,
e.g. the catalog has to contain a /Lang entry and an colorprofile and an /OutputIntent,
some other things are forbidden or restricted, e.g. the action dictionary of an annotation
should not contain Javascript.

The l3pdfmeta module collects a number of relevant requirements, tries to enforce
the ones which can be enforced and offers some tools for package authors to test if an
action is allowed in the standard or not.

This is work in progress and more tests will be added. But it should be noted that
it will probably never be possible to prevent all forbidden actions or enforce all required

∗E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org

ones or even to simply check all of them. The commands here don’t replace a check with
an external validator.

Verifying against a PDF-standard involves two different task:

• Check if you are allowed to ignore the requirement.

• Decide which action to take if the answer to the first question is NO.

The following conditionals address the first task. Because of the second task a return
value FALSE means that the standard requires you to do some special action. TRUE means
that you can ignore this requirement.1

In most cases it only matters if a requirement is in the standard, for example
Catalog_no_OCProperties means “ don’t use /OCProperties in the catalog”. For a
small number of requirements it is also needed to test a user value against a standard
value. For example, named_actions restricts the allowed named actions in an annotation
of subtype /Named, in this case it is needed to check not only if the requirement is in the
standard but also if the user value is in the allowed list.

\pdfmeta_standard_family:nn {⟨family⟩} {⟨code⟩}\pdfmeta_standard_family:nn

This command allows to change the family for which requirements should be checked.
⟨family⟩ should be one of A, X or UA. The function switches to the requirements of this
family, then executes ⟨code⟩ and then switches back to the A-standard family (this means
that the command is not needed for a test of an A-standard requirement as that is the
default anyway). ⟨code⟩ can do testing or retrieve values or other things but it shouldn’t
contain another \pdfmeta_standard_family:nn.

\pdfmeta_standard_verify:nTF {⟨requirement⟩} {⟨true code⟩} {⟨false code⟩}\pdfmeta_standard_verify:nTF ⋆

This checks if ⟨requirement⟩ is listed in the standard. FALSE as result means that
the requirement is in the standard and that probably some special action is required—
which one depends on the requirement, see the descriptions below. TRUE means that the
requirement is not there and so no special action is needed. This check can be used for
simple requirements where neither a user nor a standard value is of importance.

\pdfmeta_standard_verify:nnTF {⟨requirement⟩} {⟨value⟩} {⟨true code⟩} {⟨false
code⟩}

\pdfmeta_standard_verify:nnTF

This checks if ⟨requirement⟩ is listed in the standard, if yes it tries to find a pre­
defined test handler for the requirement and passes ⟨value⟩ and the value recorded in
the standard to it. The handler returns FALSE if some special action is needed (e.g. if
⟨value⟩ violates the rule) and TRUE if no special action is needed. If no handler exists
this commands works like \pdfmeta_standard_verify:n.

In some cases one needs to query the value in the standard, e.g. to correct a wrong
minimal PDF version you need to know which version is required by min_pdf_version.
For this two commands to access the value are provided:

\pdfmeta_standard_item:n {⟨requirement⟩}

This retrieves the value of ⟨requirement⟩ and leaves it in the input. If the requirement
isn’t in the standard the result is empty, that means that requirements not in the standard
and requirement without values can not be distinguished here.

\pdfmeta_standard_item:n ⋆

1One could also make the logic the other way round—there are arguments for both—but I had to
decide.

2

\pdfmeta_standard_get:nN {⟨requirement⟩} ⟨tl var⟩

This retrieves the value of ⟨requirement⟩ and stores it in the ⟨tl var⟩. If the
⟨requirement⟩ is not found the special value \q_no_value is used. The ⟨tl var⟩ is
assigned locally.

\pdfmeta_standard_get:nN

The following describe the requirements which can be currently tested. Require­
ments with a value should use \pdfmeta_standard_verify:nn or \pdfmeta_standard_­
verify:nnN to test a local value against the standard. The rule numbers refer to
https://docs.verapdf.org/validation/pdfa-part1/

1.2.1 Simple tests without handler

outputintent_A requires to embed a color profile and reference it in a /Outputintent
and that all output intents reference the same colorprofile. The value stores the
subtype. This requirement is detected and fulfilled by l3pdfmeta if the provided
interface in \DocumentMetadata or \SetKeys[document/metadata] is used, see
below.

annot_flags in annotations the Print flag should be true, Hidden, Invisible, NoView
should be false. This requirement is detected and set by l3pdfmeta for annotations
created with the l3pdfannot. A new check is only needed if the flags are changed or
if links are created by other means.

no_encryption don’t encrypt

no_external_content no /F, /FFilter, or /FDecodeParms in stream dictionaries

no_embed_content no /EF key in filespec, no /Type/EmbeddedFiles. This will be
checked in future by l3pdffiles for the files it embeds. The restriction is set only
for PDF/A-1 versions. PDF/A-2 and PDF/A-3 lifted this restriction: PDF/A-2
allows to embed other PDF documents conforming to either PDF/A-1 or PDF/A-2,
and PDF/A-3 and PDF/A-4F allows any embedded files.

only_pdfa_embed_content This is set for PDF/A-2a, PDF/A-2b, PDF/A-2u and
PDF/A-4. I don’t see a way to test the PDF/A-2 requirement so currently it
will simply allow everything. Perhaps a test for at least the PDF-format will be
added in future.

Catalog_no_OCProperties don’t add /OCProperties to the catalog l3pdfmeta removes
this entry at the end of the document

Catalog_OCProperties_no_AS do not use /AS optional content configuration dictionary.

Catalog_EmbeddedFiles ensure that an EmbeddedFiles name tree is in the catalog.
This is required for PDF/A-4f.

annot_widget_no_AA (rule 6.6.2-1) no AA dictionary in widget annotation, this will e.g.
be checked by the new hyperref driver.

annot_widget_no_A_AA (rule 6.9-2) no A and AA dictionary in widget.

form_no_AA (6.9-3) no /AA dictionary in form field

3

https://docs.verapdf.org/validation/pdfa-part1/

unicode that is set in the U-standards, A-2u and A-3u and means that every text should
be in unicode. This is not something that can be enforced or tested from TeX, but
in a current LaTeX normally ToUnicode are set for all fonts.

tagged that is set in A-2a and A-3a and means that the pdf must be tagged. This is
currently neither tested not enforced somewhere.

no_CharSet CharSet is deprecated is pdf 2.0 and should not be used in A-4. l3pdfmeta
will therefore suppress it for the engines pdftex and luatex (the other engines have
no suitable option)

omit_CID This avoids with PDF/A-2 and newer a failure because of with missing CID
identifications (e.g. from rule ISO 19005-2:2011, Clause: 6.2.11.4.2) It has only
with luatex an effect.

Trailer_no_Info The Info dictionary has been deprecated since quite some time.
Metadata should be set with XMP-data instead. In PDF A-4 now the Info dic­
tionary shall not be present in the trailer dictionary at all (unless there exists a
PieceInfo entry in the Catalog). And if it is present it should only contain the
/ModDate entry. In texlive 2023 the engines pdftex and luatex have primitives to
suppress the dictionary and l3pdfmeta will make use of it.

tagged (A- and UA-standards) The document must be a tagged PDF.

link_Contents (UA-standards) A link annotation must have a Contents entry (true for
UA-1)

1.2.2 Tests with values and special handlers

min_pdf_version stores the minimal PDF version needed for a standard. It should
be checked against the current PDF version (\pdf_version:). A failure means
that the version should be changed. Currently there is only one hard requirement
which leads to a failure in a validator like verapdf: The A-4 standard should use
PDF 2.0. As PDF A-1 is based on PDF 1.4 and PDF A-2 and A-3 are based on
PDF 1.7 l3pdfmeta also sets these versions also as requirements. UA-2 requires
PDF 2.0. These requirements are checked by l3pdfmeta when the standard is set
with \DocumentMetadata or \SetKeys[document/metadata] and the version is if
needed changed. At the begin of the document another check is done and error is
issued if the version doesn’t fit as this means that the document has used conflicting
standard and version setting.

max_pdf_version stores the maximal PDF version. It should be checked against the
current PDF version (\pdf_version:). A failure means that the version should
be changed. The check is currently relevant for the A-1 to A-3 standards, PDF
2.0 leads to a failure in a validator like verapdf so the maximal version should be
PDF 1.7, for UA-1 which requires PDF 1.7 or lower, and for UA-2 which requires
PDF 2.0. These requirements are checked by l3pdfmeta when the standard is set
with \DocumentMetadata or \SetKeys[document/metadata] and the version is if
needed changed. At the begin of the document another check is done and error is
issued if the version doesn’t fit as this means that the document has used conflicting
standard and version setting.

4

named_actions this requirement restricts the list of allowed named actions to NextPage,
PrevPage, FirstPage, LastPage. The check should supply the named action with­
out slash (e.g. View (failure) or NextPage (pass)).

annot_action_A (rule 6.6.1-1) this requirement restricts the allowed subtypes of the /A
dictionary of an action. The check should supply the user subtype without slash
e.g. as GoTo (pass) or Movie (failure).

1.3 Colorprofiles and OutputIntent
The pdf/A standards require that a color profile is embedded and referenced in the
catalog in the /OutputIntent array.

The problem is that the pdf/A standards also require, that if the PDF has more then
one entry in the /OutputIntent array (which is allowed), their /DestOutputProfile
should all reference the same color profile2.

Enforcing this fully is impossible if entries are added manually by users or packages
with \pdfmanagement_add:nnn {Catalog}{OutputIntents}{⟨object reference⟩} as
it is difficult to inspect and remove entries from the /OutputIntent array.

So we provide a dedicated interface to avoid the need of manual user settings and
allow the code to handle the requirements of the standard. The interface doesn’t handle
yet all finer points for PDF/X standards, e.g. named profiles, it is meant as a starting
point to get at least PDF/A validation here.

The interface looks like this

 \DocumentMetadata
 {
 %other options for example pdfstandard
 colorprofiles=
 {
 A = sRGB.icc, %or a or longer GTS_PDFA1 = sRGB.icc
 X = FOGRA39L_coated.icc, % or x or longer GTS_PDFX
 ISO_PDFE1 = whatever.icc

 }

 }

or

 \RequirePackage{pdfmanagement}
 \Setkeys[document/metadata]
 {
 %other options for example pdfstandard
 colorprofiles=
 {
 A = sRGB.icc, %or a or longer GTS_PDFA1 = sRGB.icc
 X = FOGRA39L_coated.icc, % or x or longer GTS_PDFX
 ISO_PDFE1 = whatever.icc

 }

 }
2see rule 6.2.2-2 at https://docs.verapdf.org/validation/pdfa-part1/

5

https://docs.verapdf.org/validation/pdfa-part1/

sRGB.icc and FOGRA39L_coated.icc (from the colorprofiles package are predefined
and will work directly3. whatever.icc will need special setup in the document preamble
to declare the values for the OutputIntent dictionary, but the interface hasn’t be added
yet. This will be decided later.

If an A-standard is detected or set which requires that all /DestOutputProfile
reference the same color profile, the setting is changed to the equivalent of

 \SetKeys[document/metadata]
 {
 %other options
 pdfstandard=A-2b,
 colorprofiles=
 {
 A = sRGB.icc, %or longer GTS_PDFA1 = sRGB.icc
 X = sRGB.icc,
 ISO_PDFE1 = sRGB.icc

 }

 }

The pdf/A standards will use A=sRGB.icc by default, so this doesn’t need to be
declared explicitly.

1.4 Regression tests
When doing regression tests one has to set various metadata to fix values.

\pdfmeta_set_regression_data:\pdfmeta_set_regression_data:

This sets various metadata to values needed by the LATEX regression tests. It also sets the
seed for random functions. If a current l3backend is used and \c_sys_timestamp_str is
available, the command does not set dates, but assumes that the environment variable
SOURCE_DATE_EPOCH is used.

2 XMP-metadata
XMP-metadata are data in XML format embedded in a stream inside the PDF and
referenced from the /Catalog. Such a XMP-metadata stream contains various document
related data, is required by various PDF standards and can replace or extend the data
in the /Info dictionary. In PDF 2.0 the /Info dictionary is actually deprecated and only
XMP-metadata should be used for the metadata of the PDF.

The content of a XMP-metadata stream is not a fix set of data. Typically fields like
the title, the author, the language and keywords will be there. But standards like e.g.
ZUGferd (a standard for electronic bills) can require to add more fields, and it is also
possible to define and add purely local data.

In some workflows (e.g. if dvips + ghostscript is used) a XMP-metadata stream with
some standard content is added automatically by the backend, but normally it must be
created with code.

3The dvips route will require that ps2pdf is called with -dNOSAFER, and that the color profiles are
in the current folder as ps2pdf doesn’t use kpathsea to find them.

6

For this task the packages hyperxmp, xmpincl or pdfx (which uses xmpincl) can be
used, but all these packages are not compatible with the pdfmanagement4. The following
code is meant as replacement for these packages.

hyperxmp uses \hypersetup as user interface to enter the XMP-metadata. This syn­
tax is also supported by the new code5, so if hyperref has been loaded, e.g. pdftitle=xxx
can be used to set the title. But XMP-metadata shouldn’t require to use hyperref and in
a future version an interface without hyperref will be added.

There is currently no full user interface command to extend the XMP-metadata with
for example the code needed for ZUGferd, they will be added in a second step.

2.1 Debug option
The resulting XMP-packet can be written to an external file by activating a debug option

\DocumentMetadata{debug={xmp-export}}
%or
\DocumentMetadata{debug={xmp-export=true}}
%or
\DocumentMetadata{debug={xmp-export=filename}}
%or
\SetKeys[document/metadata]{debug={xmp-export}}

By default the data are written to \jobname.xmpi, if a filename is given, then
filename.xmpi is used instead. xmp-export=false deactivates the export.

2.2 Encoding and escaping
XMP-metadata are stored as UTF-8 in the PDF. This mean if you open a PDF in an
editor a content like “ grüße” will be shown probably as “ grÃ¼ÃŸe”. As XMP-metadata
are in XML format special chars like <, >, and & and „ must be escaped.

hyperxmp hooks into hyperref and passes all input through \pdfstringdef. This
means a word like “ hallo” is first converted by \pdfstringdef into
\376\377\000h\000a\000l\000l\000o and then back to UTF-8 by hyperxmp and in the
course of this action the XML-escapings are applied. pdfx uses \pdfstringdef together
with a special fontencoding (similar to the PU-encoding of hyperref) for a similar aim. The
code here is based on \text_purify:n followed by a few replacements for the escaping.

User data should normally be declared in the preamble (or even in the \DocumentMetadata
command), and consist of rather simple text; & can be entered as \& (but directly & will
normally work too), babel shorthands should not be used. Some data are interpreted
as comma lists, in this cases commas which are part of the text should be protected
by braces. In some cases a text in brackets like [en] is interpreted as language tag,
if they are part of a text they should be protected by braces too. XMP-metadata are
stored uncompressed in the PDF so if you are unsure if a value has been passed cor­
rectly, open the PDF in an editor, copy the whole block and pass it to a validator, e.g.
https://www.w3.org/RDF/Validator/.

4hyperxmp was partly compatible as the pdfmanagement contained some patches for it, but these
patches have now been removed.

5with a number of changes which are discussed in more details below

7

https://www.w3.org/RDF/Validator/

2.3 User interfaces and differences to hyperxmp
2.3.1 PDF standards

The hyperxmp/hyperref keys pdfapart, pdfaconformance, pdfuapart, pdfxstandard
and pdfa are ignored by this code. Standards must be set with the pdfstandard key
of \DocumentMetadata or \SetKeys[document/metadata]. This key can be used more
than once, e.g.
pdfstandard=A-2b,pdfstandard=X-4,pdfstandard=UA-1.
Note that using these keys doesn’t mean that the document actually follows the standard.
LATEX can neither ensure nor check all requirements of a standard, and not everything
it can do theoretically has already been implemented. When setting an A standard, the
code will e.g. insert a color profile and warn if the PDF version doesn’t fit, but X and
UA currently only adds the relevant declarations to the XMP-metadata. It is up to the
author to ensure and validate that the document actually follows the standard.

2.3.2 Declarations

PDF knows beside standards also a more generic method to declare conformance to some
specification by adding a declaration, see https://pdfa.org/wp-content/uploads/
2019/09/PDF-Declarations.pdf). Such declarations can be added as a simple url which
identify the specification or with additional details regarding date and credentials. An
example would be

\RequirePackage{pdfmanagement} %or \DocumentMetadata{...}
\documentclass{article}
\ExplSyntaxOn
\pdfmeta_xmp_add_declaration:e {https://pdfa.org/declarations\c_hash_str iso32005}
\pdfmeta_xmp_add_declaration:ennnn
 {https://pdfa.org/declarations\c_hash_str wcag21A}{}{2023-11-20}{}{}
\pdfmeta_xmp_add_declaration:nnnnn
 {https://github.com/TikZlings/no-duck-harmed}
 {Ulrike~Fischer}{2023-11-20}{Bär}{https://github.com/u-fischer/bearwear}

\pdfmeta_xmp_add_declaration:nnnnn
 {https://github.com/TikZlings/no-duck-harmed}
 {Ulrike~Fischer}{2023-11-20}{Paulo}{https://github.com/cereda/sillypage}
\ExplSyntaxOff
\begin{document}
 text
\end{document}

2.3.3 Dates

• The dates xmp:CreateDate, xmp:ModifyDate, xmp:MetadataDate are normally set
automatically to the current date/time when the compilation started. If they should
be changed (e.g. for regression tests to produce reproducible documents) they
can be set with \hypersetup with the keys pdfcreationdate, pdfmoddate and
pdfmetadate.

\hypersetup{pdfcreationdate=D:20010101205959-00'00'}

8

https://pdfa.org/wp-content/uploads/2019/09/PDF-Declarations.pdf
https://pdfa.org/wp-content/uploads/2019/09/PDF-Declarations.pdf

The format should be a full date/time in PDF format, so one of these (naturally
the numbers can change):

 D:20010101205959-00'00'
 D:20010101205959+00'00'
 D:20010101205959Z

• The date dc:date is an “ author date” and so should normally be set to the same
date as given by \date. This can be done with the key pdfdate6. The value should
be a date in ISO 8601 format:

2022 %year
2022-09-04 %year-month-day
2022-09-04T19:20 %year-month-day hour:minutes
2022-09-04T19:20:30 % year-month-day hour:minutes:second
2022-09-04T19:20:30.45 % year-month-day hour:minutes:second with fraction
2022-09-04T19:20+01:00 % with time zone designator
2022-09-04T19:20-02:00 % time zone designator
2022-09-04T19:20Z % time zone designator

It is also possible to give the date as a full date in PDF format as described above.
If not set the current date/time is used.

2.4 Language
The code assumes that a default language is always declared (as the pdfmanagement
gives the /Lang entry in the catalog a default value) This language can be changed with
the key lang of \DocumentMetadata and \SetKeys[document/metadata]. This is the
preferred method. babel will look for this value and adjust its language settings. The
hyperref key pdflang is also honored. Its value should be a simple language tag like de
or de-DE.

The main language is also used in a number of attributes in the XMP data, if wanted
a different language can be set here with the hyperref/hyperxmp key pdfmetalang.

A number of entries can be given a language tag. Such a language is given by using
an “ optional argument” before the text:

\hypersetup{pdftitle={[en]english,[de]deutsch}}
\hypersetup{pdfsubtitle={[en]subtitle in english}}

2.5 Rights
The keys pdfcopyright and pdflicenseurl work similar as in hyperxmp. But differently
to hyperxmp the code doesn’t set the xmpRights:Marked property, as I have some doubts
that one deduce its value simply by checking if the other keys have been used; if needed
it can be added by using one of these settings (true means with copyright, false means
public domain).

\AddToDocumentProperties[document]{copyright}{true}
\AddToDocumentProperties[document]{copyright}{false}

6Extracting the value automatically from \date is not really possible as authors often put formatting
or additional info in this command.

9

2.6 PDF related data
The PDF producer is for all engines by default built from the engine name and the engine
version and doesn’t use the banners as with hyperxmp and pdfx, it can be set manually
with the pdfproducer key.

The key pdftrapped is ignored. Trapped is deprecated in PDF 2.0.

2.7 Document data
The authors should be given with the pdfauthor key, separated by commas. If an author
contains a comma, protect/hide it by a brace.

2.8 User commands
The XMP-meta data are added automatically. This can be suppressed with the
document/metadata key xmp.

\pdfmeta_xmp_add:n {⟨XML⟩}

With this command additional XML code can be added to the Metadata. The content
is added unchanged, and not sanitized.

\pdfmeta_xmp_add:n

\pdfmeta_xmp_xmlns_new:nn {⟨prefix⟩} {⟨uri⟩}

With this command a xmlns name space can be added. The ⟨uri⟩ argument is expanded,
a hash can be input with \c_hash_str.

\pdfmeta_xmp_xmlns_new:nn

With the two following commands PDF declarations can be added to the XMP
metadata (see https://pdfa.org/wp-content/uploads/2019/09/PDF-Declarations.
pdf).

\pdfmeta_xmp_add_declaration:n {⟨uri⟩}\pdfmeta_xmp_add_declaration:n
\pdfmeta_xmp_add_declaration:e

This add a PDF declaration with the required conformsTo property to the XMP meta­
data. ⟨uri⟩ should not be empty and is a URI specifying the standard or profile referred
to by the PDF Declaration. If the uri contains a hash, use \c_hash_str to escape it and
use the e variant to expand it.

\pdfmeta_xmp_add_declaration:nnnnn
 {⟨uri⟩} {⟨By⟩} {⟨Date⟩} {⟨Credentials⟩} {⟨Report⟩}

\pdfmeta_xmp_add_declaration:nnnnn
\pdfmeta_xmp_add_declaration:(ennnn|eeenn)

This add a PDF declaration to the XMP metadata similar to \pdfmeta_xmp_add_­
declaration:n. With ⟨By⟩, ⟨Date⟩, ⟨Credentials⟩, ⟨Report⟩ the optional fields
claimBy (text), claimDate (iso date), claimCredentials (text) and claimReport (uri)
of the claimData property can be given. If \pdfmeta_xmp_add_declaration:nnnnn is
used twice with the same ⟨uri⟩ argument the claimData are concatenated. There is no
check if the claimData are identical.

The following two commands can be used to extend the schema declarations in the
XMP metadata. This is for example needed to implement a standard like ZUGferd/Factur
X for invoices. A schema declaration should be added only once but as this task is
probably not needed frequently only light guards are there to avoid duplicated entries.

10

https://pdfa.org/wp-content/uploads/2019/09/PDF-Declarations.pdf
https://pdfa.org/wp-content/uploads/2019/09/PDF-Declarations.pdf

\pdfmeta_xmp_schema_new:nnn {⟨text⟩} {⟨prefix⟩} {⟨uri⟩}\pdfmeta_xmp_schema_new:nnn

⟨text⟩ is some string describing the schema, e.g. PDF/A~Identification~Schema,
⟨prefix⟩ is the unique prefix used by the schema. This prefix must be declared first
with \pdfmeta_xmp_xmlns_new:nn. If a schema with this prefix has already been de­
clared, it will currently be ignored with a warning. The ⟨uri⟩ is expanded, so a hash can
for example be given as \c_hash_str.

\pdfmeta_xmp_property_new:nnnnn {⟨schema prefix⟩}
 {⟨name⟩} {⟨type⟩} {⟨category⟩} {⟨description⟩}

\pdfmeta_xmp_property_new:nnnnn

If the new property already exists in the schema (as identified by the combination of
⟨schema prefix⟩ and ⟨name⟩ the property is silently ignore. ⟨schema prefix⟩ is the pre­
fix declared with the previous command. schema, e.g. PDF/A~Identification~Schema,
⟨name⟩ is a short string that identifies the property, e.g. xmpMM or year. It must be
unique in the properties of a schema. ⟨type⟩ is e.g. URI or Integer or Text, ⟨category⟩
is e.g. internal or external, ⟨description⟩ is a free description string.

3 l3pdfmeta implementation
 1 ⟨@@=pdfmeta⟩
 2 ⟨∗header⟩
 3 \ProvidesExplPackage{l3pdfmeta}{2026-01-23}{0.96y}
 4 {PDF-Standards---LaTeX PDF management bundle}
 5 ⟨/header⟩

Message for unknown standards
 6 ⟨∗package⟩
 7 \msg_new:nnn {pdf }{unknown-standard}{The~standard~'#1'~is~unknown~and~has~been~ignored}

Message for unknown standard family
 8 ⟨∗package⟩
 9 \msg_new:nnn {pdf }{unknown-standard-family}{The~standard~family~'#1'~is~unknown}

Message for not fitting pdf version
 10 \msg_new:nnn {pdf }{wrong-pdfversion}
 11 {PDF~version~#1~is~too~#2~for~standard~'#3'.\\
 12 Check~if~there~are~conflicting~PDF~standard\\
 13 and~PDF~version~settings!}

Messages for embedded files
 14 \msg_new:nnn {pdf }{validation-failure}
 15 {
 16 PDF~standard~validation~failure.\\
 17 #1
 18 }

\l__pdfmeta_tmpa_tl
\l__pdfmeta_tmpb_tl
\l__pdfmeta_tmpa_str
\g__pdfmetatmpa_str
\l__pdfmeta_tmpa_seq
\l__pdfmeta_tmpb_seq

 19 \tl_new:N \l__pdfmeta_tmpa_tl
 20 \tl_new:N \l__pdfmeta_tmpb_tl
 21 \str_new:N \l__pdfmeta_tmpa_str
 22 \str_new:N \g__pdfmeta_tmpa_str
 23 \seq_new:N \l__pdfmeta_tmpa_seq

11

 24 \seq_new:N \l__pdfmeta_tmpb_seq

(End of definition for \l__pdfmeta_tmpa_tl and others.)

3.1 Standards (work in progress)
3.1.1 Tools and tests

These internal properties will contain the active settings for a standard family. \g__­
pdfmeta_standard_prop will be used to contain the requirements of the current family
for a validation.

\g__pdfmeta_standard_prop
\g__pdfmeta_standard_A_prop
\g__pdfmeta_standard_UA_prop
\g__pdfmeta_standard_X_prop

 25 \prop_new:N \g__pdfmeta_standard_prop
 26 \prop_new:N \g__pdfmeta_standard_A_prop
 27 \prop_new:N \g__pdfmeta_standard_UA_prop
 28 \prop_new:N \g__pdfmeta_standard_X_prop

(End of definition for \g__pdfmeta_standard_prop and others.)

3.1.2 Functions to check a requirement

\pdfmeta_standard_use_family:nn This allows to run tests for another standard family: it switches the requirements, exe­
cutes the code stored in the second argument and then switches back.

 29 \cs_new_protected:Npn \pdfmeta_standard_family:nn #1 #2
 30 {
 31 \prop_if_exist:cTF { g__pdfmeta_standard_#1_prop }
 32 {

until documentmetadata-support is update we can not be sure that the A prop is properly
filled.

 33 \prop_gset_eq:NN \g__pdfmeta_standard_A_prop \g__pdfmeta_standard_prop
 34 \prop_gset_eq:Nc \g__pdfmeta_standard_prop { g__pdfmeta_standard_#1_prop }
 35 #2
 36 \prop_gset_eq:NN \g__pdfmeta_standard_prop \g__pdfmeta_standard_A_prop
 37 }
 38 {
 39 \msg_warning:nnn {pdf} {unknown-standard-family}{#1}
 40 }
 41 }

(End of definition for \pdfmeta_standard_use_family:nn. This function is documented on page ??.)

At first two commands to get the standard value if needed:

\pdfmeta_standard_item:n

 42 \cs_new:Npn \pdfmeta_standard_item:n #1
 43 {
 44 \prop_item:Nn \g__pdfmeta_standard_prop {#1}
 45 }

12

(End of definition for \pdfmeta_standard_item:n. This function is documented on page 2.)

\pdfmeta_standard_get:nN

 46 \cs_new_protected:Npn \pdfmeta_standard_get:nN #1 #2
 47 {
 48 \prop_get:NnN \g__pdfmeta_standard_prop {#1} #2
 49 }

(End of definition for \pdfmeta_standard_get:nN. This function is documented on page 3.)

Now two functions to check the requirement. A simple and one value/handler based.

\pdfmeta_standard_verify_p:n
\pdfmeta_standard_verify:nTF

This is a simple test is the requirement is in the prop.

 50 \prg_new_conditional:Npnn \pdfmeta_standard_verify:n #1 {T,F,TF}
 51 {
 52 \prop_if_in:NnTF \g__pdfmeta_standard_prop {#1}
 53 {
 54 \prg_return_false:
 55 }
 56 {
 57 \prg_return_true:
 58 }
 59 }

(End of definition for \pdfmeta_standard_verify:nTF. This function is documented on page 2.)

\pdfmeta_standard_verify:nnTF This allows to test against a user value. It calls a test handler if this exists and passes
the user and the standard value to it. The test handler should return true or false.

 60 \prg_new_protected_conditional:Npnn \pdfmeta_standard_verify:nn #1 #2 {T,F,TF}
 61 {
 62 \prop_if_in:NnTF \g__pdfmeta_standard_prop {#1}
 63 {
 64 \cs_if_exist:cTF {__pdfmeta_standard_verify_handler_#1:nn}
 65 {
 66 \exp_args:Nnne
 67 \use:c
 68 {__pdfmeta_standard_verify_handler_#1:nn}
 69 { #2 }
 70 { \prop_item:Nn \g__pdfmeta_standard_prop {#1} }
 71 }
 72 {
 73 \prg_return_false:
 74 }
 75 }
 76 {
 77 \prg_return_true:
 78 }
 79 }

(End of definition for \pdfmeta_standard_verify:nnTF. This function is documented on page 2.)

13

Now we setup a number of handlers.
The first actually ignores the user values and tests against the current pdf version.

If this is smaller than the minimum we report a failure. #1 is the user value, #2 the
reference value from the standard.

__pdfmeta_standard_verify_handler_min_pdf_version:nn

 80 %
 81 \cs_new_protected:Npn __pdfmeta_standard_verify_handler_min_pdf_version:nn #1 #2
 82 {
 83 \pdf_version_compare:NnTF <
 84 { #2 }
 85 {\prg_return_false:}
 86 {\prg_return_true:}
 87 }

(End of definition for __pdfmeta_standard_verify_handler_min_pdf_version:nn.)

The next is the counter part and checks that the version is not to high

__pdfmeta_standard_verify_handler_max_pdf_version:nn

 88 %
 89 \cs_new_protected:Npn __pdfmeta_standard_verify_handler_max_pdf_version:nn #1 #2
 90 {
 91 \pdf_version_compare:NnTF >
 92 { #2 }
 93 {\prg_return_false:}
 94 {\prg_return_true:}
 95 }

(End of definition for __pdfmeta_standard_verify_handler_max_pdf_version:nn.)

The next checks if the user value is in the list and returns a failure if not.

__pdfmeta_standard_verify_handler_named_actions:nn

 96 \cs_new_protected:Npn __pdfmeta_standard_verify_handler_named_actions:nn #1 #2
 97 {
 98 \tl_if_in:nnTF { #2 }{ #1 }
 99 {\prg_return_true:}
 100 {\prg_return_false:}
 101 }

(End of definition for __pdfmeta_standard_verify_handler_named_actions:nn.)

The next checks if the user value is in the list and returns a failure if not.

__pdfmeta_standard_verify_handler_annot_action_A:nn

 102 \cs_new_protected:Npn __pdfmeta_standard_verify_handler_annot_action_A:nn #1 #2
 103 {
 104 \tl_if_in:nnTF { #2 }{ #1 }
 105 {\prg_return_true:}
 106 {\prg_return_false:}
 107 }

14

(End of definition for __pdfmeta_standard_verify_handler_annot_action_A:nn.)

This check is probably not needed, but for completeness

__pdfmeta_standard_verify_handler_outputintent_subtype:nn

 108 \cs_new_protected:Npn __pdfmeta_standard_verify_handler_outputintent_subtype:nn #1 #2
 109 {
 110 \tl_if_eq:nnTF { #2 }{ #1 }
 111 {\prg_return_true:}
 112 {\prg_return_false:}
 113 }

(End of definition for __pdfmeta_standard_verify_handler_outputintent_subtype:nn.)

3.1.3 Enforcing requirements

A number of requirements can sensibly be enforced by us.

Annot flags pdf/A require a number of settings here, we store them in a command
which can be added to the property of the standard:

 114 \cs_new_protected:Npn __pdfmeta_verify_pdfa_annot_flags:
 115 {
 116 \bitset_set_true:Nn \l_pdfannot_F_bitset {Print}
 117 \bitset_set_false:Nn \l_pdfannot_F_bitset {Hidden}
 118 \bitset_set_false:Nn \l_pdfannot_F_bitset {Invisible}
 119 \bitset_set_false:Nn \l_pdfannot_F_bitset {NoView}
 120 \pdfannot_dict_put:nnn {link/URI}{F}{ \bitset_to_arabic:N \l_pdfannot_F_bitset }
 121 \pdfannot_dict_put:nnn {link/GoTo}{F}{ \bitset_to_arabic:N \l_pdfannot_F_bitset }
 122 \pdfannot_dict_put:nnn {link/GoToR}{F}{ \bitset_to_arabic:N \l_pdfannot_F_bitset }
 123 \pdfannot_dict_put:nnn {link/Launch}{F}{ \bitset_to_arabic:N \l_pdfannot_F_bitset }
 124 \pdfannot_dict_put:nnn {link/Named}{F}{ \bitset_to_arabic:N \l_pdfannot_F_bitset }
 125 }

At begin document this should be checked:

 126 \hook_gput_code:nnn {begindocument} {pdf}
 127 {
 128 \pdfmeta_standard_verify:nF { annot_flags }
 129 { __pdfmeta_verify_pdfa_annot_flags: }
 130 \pdfmeta_standard_verify:nF { Trailer_no_Info }
 131 { __pdf_backend_omit_info:n {1} }
 132 \pdfmeta_standard_verify:nF { no_CharSet }
 133 { __pdf_backend_omit_charset:n {1} }
 134 \pdfmeta_standard_verify:nF { omit_CID }
 135 { __pdf_backend_omit_cidset:n {1} }
 136 __pdfmeta_check_standard_pdfversion:
 137 }

15

3.1.4 pdf/A

We use global properties so that follow up standards can be copied and then adjusted.
Some note about requirements for more standard can be found in info/pdfstandard.tex.

\g__pdfmeta_standard_pdf/A-1B_prop
\g__pdfmeta_standard_pdf/A-2A_prop
\g__pdfmeta_standard_pdf/A-2B_prop
\g__pdfmeta_standard_pdf/A-2U_prop
\g__pdfmeta_standard_pdf/A-3A_prop
\g__pdfmeta_standard_pdf/A-3B_prop
\g__pdfmeta_standard_pdf/A-3U_prop
\g__pdfmeta_standard_pdf/A-4_prop
\g__pdfmeta_standard_pdf/A-4F_prop

 138 \prop_new:c { g__pdfmeta_standard_pdf/A-1B_prop }
 139 \prop_gset_from_keyval:cn { g__pdfmeta_standard_pdf/A-1B_prop }
 140 {
 141 ,name = pdf/A-1B
 142 ,type = A
 143 ,level = 1
 144 ,conformance = B
 145 ,year = 2005
 146 ,min_pdf_version = 1.4 %minimum
 147 ,max_pdf_version = 1.4 %maximum
 148 ,no_encryption =
 149 ,no_external_content = % no F, FFilter, or FDecodeParms in stream dicts
 150 ,no_embed_content = % no EF key in filespec, no /Type/EmbeddedFiles
 151 ,max_string_size = 65535
 152 ,max_array_size = 8191
 153 ,max_dict_size = 4095
 154 ,max_obj_num = 8388607
 155 ,max_nest_qQ = 28
 156 ,named_actions = {NextPage, PrevPage, FirstPage, LastPage}
 157 ,annot_flags =
 158 %booleans. Only the existence of the key matter.
 159 %If the entry is added it means a requirements is there
 160 %(in most cases "don't use ...")
 161 %
 162 %===============
 163 % Rule 6.1.13-1 CosDocument, isOptionalContentPresent == false
 164 ,Catalog_no_OCProperties =
 165 % Rule 6.9-4 The AS key shall not appear in any optional content configuration dictionary.
 166 % actually only starting with A-2 but doesn't harm here either
 167 ,Catalog_OCProperties_no_AS=
 168 %===============
 169 % Rule 6.6.1-1: PDAction, S == "GoTo" || S == "GoToR" || S == "Thread"
 170 % || S == "URI" || S == "Named" || S == "SubmitForm"
 171 % means: no /S/Launch, /S/Sound, /S/Movie, /S/ResetForm, /S/ImportData,
 172 % /S/JavaScript, /S/Hide
 173 ,annot_action_A = {GoTo,GoToR,Thread,URI,Named,SubmitForm}
 174 %===============
 175 % Rule 6.6.2-1: PDAnnot, Subtype != "Widget" || AA_size == 0
 176 % means: no AA dictionary
 177 ,annot_widget_no_AA =
 178 %===============
 179 % Rule 6.9-2: PDAnnot, Subtype != "Widget" || (A_size == 0 && AA_size == 0)
 180 % (looks like a tightening of the previous rule)
 181 ,annot_widget_no_A_AA =
 182 %===============
 183 % Rule 6.9-1 PDAcroForm, NeedAppearances == null || NeedAppearances == false
 184 ,form_no_NeedAppearances =
 185 %===============

16

 186 %Rule 6.9-3 PDFormField, AA_size == 0
 187 ,form_no_AA =
 188 %===============
 189 % to be continued https://docs.verapdf.org/validation/pdfa-part1/
 190 % - Outputintent/colorprofiles requirements
 191 % an outputintent should be loaded and is unique.
 192 ,outputintent_A = {GTS_PDFA1}
 193 % - no Alternates key in image dictionaries
 194 % - no OPI, Ref, Subtype2 with PS key in xobjects
 195 % - Interpolate = false in images
 196 % - no TR, TR2 in ExtGstate
 197 }
 198
 199 %A-2b ==============
 200 \prop_new:c { g__pdfmeta_standard_pdf/A-2B_prop }
 201 \prop_gset_eq:cc
 202 { g__pdfmeta_standard_pdf/A-2B_prop }
 203 { g__pdfmeta_standard_pdf/A-1B_prop }
 204 \prop_gput:cnn
 205 { g__pdfmeta_standard_pdf/A-2B_prop }{name}{pdf/A-2B}
 206 \prop_gput:cnn
 207 { g__pdfmeta_standard_pdf/A-2B_prop }{year}{2011}
 208 \prop_gput:cnn
 209 { g__pdfmeta_standard_pdf/A-2B_prop }{level}{2}
 210 % embedding files is allowed (with restrictions)
 211 \prop_gremove:cn
 212 { g__pdfmeta_standard_pdf/A-2B_prop }
 213 { no_embed_content }
 214 \prop_gput:cnn
 215 { g__pdfmeta_standard_pdf/A-2B_prop }
 216 { only_pdfa_embed_content }
 217 {}
 218 \prop_gput:cnn
 219 { g__pdfmeta_standard_pdf/A-2B_prop }{max_pdf_version}{1.7}
 220 \prop_gput:cnn
 221 { g__pdfmeta_standard_pdf/A-2B_prop }{omit_CID}{}
 222 % OCG layers are allowed (with restrictions)
 223 \prop_gremove:cn
 224 { g__pdfmeta_standard_pdf/A-2B_prop }
 225 { Catalog_no_OCProperties }
 226
 227 %A-2u ==============
 228 \prop_new:c { g__pdfmeta_standard_pdf/A-2U_prop }
 229 \prop_gset_eq:cc
 230 { g__pdfmeta_standard_pdf/A-2U_prop }
 231 { g__pdfmeta_standard_pdf/A-2B_prop }
 232 \prop_gput:cnn
 233 { g__pdfmeta_standard_pdf/A-2U_prop }{name}{pdf/A-2U}
 234 \prop_gput:cnn
 235 { g__pdfmeta_standard_pdf/A-2U_prop }{conformance}{U}
 236 \prop_gput:cnn
 237 { g__pdfmeta_standard_pdf/A-2U_prop }{unicode}{}
 238
 239 %A-2a ==============

17

 240 \prop_new:c { g__pdfmeta_standard_pdf/A-2A_prop }
 241 \prop_gset_eq:cc
 242 { g__pdfmeta_standard_pdf/A-2A_prop }
 243 { g__pdfmeta_standard_pdf/A-2B_prop }
 244 \prop_gput:cnn
 245 { g__pdfmeta_standard_pdf/A-2A_prop }{name}{pdf/A-2A}
 246 \prop_gput:cnn
 247 { g__pdfmeta_standard_pdf/A-2A_prop }{conformance}{A}
 248 \prop_gput:cnn
 249 { g__pdfmeta_standard_pdf/A-2A_prop }{tagged}{}
 250
 251
 252 %A-3b ==============
 253 \prop_new:c { g__pdfmeta_standard_pdf/A-3B_prop }
 254 \prop_gset_eq:cc
 255 { g__pdfmeta_standard_pdf/A-3B_prop }
 256 { g__pdfmeta_standard_pdf/A-2B_prop }
 257 \prop_gput:cnn
 258 { g__pdfmeta_standard_pdf/A-3B_prop }{name}{pdf/A-3B}
 259 \prop_gput:cnn
 260 { g__pdfmeta_standard_pdf/A-3B_prop }{year}{2012}
 261 \prop_gput:cnn
 262 { g__pdfmeta_standard_pdf/A-3B_prop }{level}{3}
 263 % embedding files is allowed
 264 \prop_gremove:cn
 265 { g__pdfmeta_standard_pdf/A-3B_prop }
 266 { only_pdfa_embed_content }
 267 %A-3u ==============
 268 \prop_new:c { g__pdfmeta_standard_pdf/A-3U_prop }
 269 \prop_gset_eq:cc
 270 { g__pdfmeta_standard_pdf/A-3U_prop }
 271 { g__pdfmeta_standard_pdf/A-3B_prop }
 272 \prop_gput:cnn
 273 { g__pdfmeta_standard_pdf/A-3U_prop }{name}{pdf/A-3U}
 274 \prop_gput:cnn
 275 { g__pdfmeta_standard_pdf/A-3U_prop }{conformance}{U}
 276 \prop_gput:cnn
 277 { g__pdfmeta_standard_pdf/A-3U_prop }{unicode}{}
 278
 279 %A-3a ==============
 280 \prop_new:c { g__pdfmeta_standard_pdf/A-3A_prop }
 281 \prop_gset_eq:cc
 282 { g__pdfmeta_standard_pdf/A-3A_prop }
 283 { g__pdfmeta_standard_pdf/A-3B_prop }
 284 \prop_gput:cnn
 285 { g__pdfmeta_standard_pdf/A-3A_prop }{name}{pdf/A-3A}
 286 \prop_gput:cnn
 287 { g__pdfmeta_standard_pdf/A-3A_prop }{conformance}{A}
 288 \prop_gput:cnn
 289 { g__pdfmeta_standard_pdf/A-3A_prop }{tagged}{}
 290
 291 %A-4 ==============
 292 \prop_new:c { g__pdfmeta_standard_pdf/A-4_prop }
 293 \prop_gset_eq:cc

18

 294 { g__pdfmeta_standard_pdf/A-4_prop }
 295 { g__pdfmeta_standard_pdf/A-3U_prop }
 296 \prop_gput:cnn
 297 { g__pdfmeta_standard_pdf/A-4_prop }{name}{pdf/A-4}
 298 \prop_gput:cnn
 299 { g__pdfmeta_standard_pdf/A-4_prop }{level}{4}
 300 \prop_gput:cnn
 301 { g__pdfmeta_standard_pdf/A-4_prop }{min_pdf_version}{2.0}
 302 \prop_gput:cnn
 303 { g__pdfmeta_standard_pdf/A-4_prop }{year}{2020}
 304 \prop_gput:cnn
 305 { g__pdfmeta_standard_pdf/A-4_prop }{no_CharSet}{}
 306 \prop_gput:cnn
 307 { g__pdfmeta_standard_pdf/A-4_prop }{Trailer_no_Info}{}
 308 \prop_gput:cnn
 309 { g__pdfmeta_standard_pdf/A-4_prop }{only_pdfa_embed_content}{}
 310 \prop_gremove:cn
 311 { g__pdfmeta_standard_pdf/A-4_prop }{conformance}
 312 \prop_gremove:cn
 313 { g__pdfmeta_standard_pdf/A-4_prop }{max_pdf_version}
 314 \prop_gremove:cn
 315 { g__pdfmeta_standard_pdf/A-4_prop }{Catalog_OCProperties_no_AS}
 316 %A-4f ==============
 317 \prop_new:c { g__pdfmeta_standard_pdf/A-4F_prop }
 318 \prop_gset_eq:cc
 319 { g__pdfmeta_standard_pdf/A-4F_prop }
 320 { g__pdfmeta_standard_pdf/A-4_prop }
 321 \prop_gput:cnn
 322 { g__pdfmeta_standard_pdf/A-4F_prop }{conformance}{F}
 323 % containsEmbeddedFiles == true ISO 19005-4:2020, Clause: 6.9, Test number: 5
 324 \prop_gput:cnn
 325 { g__pdfmeta_standard_pdf/A-4F_prop }{Catalog_EmbeddedFiles}{}
 326 % can contain any file
 327 \prop_gremove:cn
 328 { g__pdfmeta_standard_pdf/A-4F_prop }{only_pdfa_embed_content}

(End of definition for \g__pdfmeta_standard_pdf/A-1B_prop and others.)

3.1.5 pdf/UA

\g__pdfmeta_standard_pdf/UA-1_prop
\g__pdfmeta_standard_pdf/UA-2_prop

 329 \prop_new:c { g__pdfmeta_standard_pdf/UA-1_prop}
 330 \prop_new:c { g__pdfmeta_standard_pdf/UA-2_prop}
 331 \prop_gset_from_keyval:cn { g__pdfmeta_standard_pdf/UA-1_prop }
 332 {
 333 ,name = pdf/UA-1
 334 ,level = 1
 335 ,year = 2014
 336 ,min_pdf_version = 1.4 %minimum
 337 ,max_pdf_version = 1.7 %maximum
 338 ,tagged =
 339 ,link_Contents =
 340 }

19

 341 \prop_gset_from_keyval:cn { g__pdfmeta_standard_pdf/UA-2_prop }
 342 {
 343 ,name = pdf/UA-2
 344 ,level = 2
 345 ,year = 2024
 346 ,min_pdf_version = 2.0 %minimum
 347 ,tagged =
 348 }

(End of definition for \g__pdfmeta_standard_pdf/UA-1_prop and \g__pdfmeta_standard_pdf/UA-2_­
prop.)

3.1.6 pdf/X

We know only the names …

\g__pdfmeta_standard_pdf/X-4_prop
\g__pdfmeta_standard_pdf/X-4P_prop
\g__pdfmeta_standard_pdf/X-5G_prop
\g__pdfmeta_standard_pdf/X-5N_prop
\g__pdfmeta_standard_pdf/X-5PG_prop
\g__pdfmeta_standard_pdf/X-6_prop
\g__pdfmeta_standard_pdf/X-6N_prop
\g__pdfmeta_standard_pdf/X-6P_prop

 349 \prop_new:c { g__pdfmeta_standard_pdf/X-4_prop}
 350 \prop_new:c { g__pdfmeta_standard_pdf/X-4P_prop}
 351 \prop_new:c { g__pdfmeta_standard_pdf/X-5G_prop}
 352 \prop_new:c { g__pdfmeta_standard_pdf/X-5N_prop}
 353 \prop_new:c { g__pdfmeta_standard_pdf/X-5PG_prop}
 354 \prop_new:c { g__pdfmeta_standard_pdf/X-6_prop}
 355 \prop_new:c { g__pdfmeta_standard_pdf/X-6N_prop}
 356 \prop_new:c { g__pdfmeta_standard_pdf/X-6P_prop}
 357
 358 \prop_gset_from_keyval:cn { g__pdfmeta_standard_pdf/X-4_prop }
 359 {
 360 ,name = PDF/X-4
 361 }
 362 \prop_gset_from_keyval:cn { g__pdfmeta_standard_pdf/X-4P_prop }
 363 {
 364 ,name = PDF/X-4p
 365 }
 366 \prop_gset_from_keyval:cn { g__pdfmeta_standard_pdf/X-5G_prop }
 367 {
 368 ,name = PDF/X-5g
 369 }
 370 \prop_gset_from_keyval:cn { g__pdfmeta_standard_pdf/X-5N_prop }
 371 {
 372 ,name = PDF/X-5n
 373 }
 374 \prop_gset_from_keyval:cn { g__pdfmeta_standard_pdf/X-5PG_prop }
 375 {
 376 ,name = PDF/X-5pg
 377 }
 378 \prop_gset_from_keyval:cn { g__pdfmeta_standard_pdf/X-6_prop }
 379 {
 380 ,name = PDF/X-6
 381 }
 382 \prop_gset_from_keyval:cn { g__pdfmeta_standard_pdf/X-6N_prop }
 383 {
 384 ,name = PDF/X-6n
 385 }

20

 386 \prop_gset_from_keyval:cn { g__pdfmeta_standard_pdf/X-6P_prop }
 387 {
 388 ,name = PDF/X-6p
 389 }

(End of definition for \g__pdfmeta_standard_pdf/X-4_prop and others.)

3.1.7 Embedded Files

Standard 4-AF is needed if we add AF files for tagging but it also requires an Embedded­
Files name tree, so we test at the end if the name tree is empty and add a small readme
if yes

 390 \AddToHook{begindocument/end}
 391 {
 392 \pdfmeta_standard_verify:nF{Catalog_EmbeddedFiles}
 393 {
 394 \tl_gput_right:Nn\g__kernel_pdfmanagement_end_run_code_tl
 395 {
 396 \pdfdict_if_empty:nT { g__pdf_Core/Catalog/Names/EmbeddedFiles }
 397 {
 398 \group_begin:
 399 \pdfdict_put:nne {l_pdffile/Filespec} {Desc}{(note~about~PDF/A-4F)}
 400 \pdfdict_put:nnn { l_pdffile/Filespec }{AFRelationship} { /Unspecified }
 401 \pdffile_embed_stream:nnN
 402 {The~document~was~declared~to~be~of~type~PDF/A-4f~but~hasn't~any~attachments.~
 403 LaTeX~therefore~added~this~dummy~file.}
 404 {pdf-A4f.txt}
 405 \l__pdfmeta_tmpa_tl
 406 \exp_args:Nne __pdf_backend_Names_gpush:nn{EmbeddedFiles}{(pdf-A4f)~\l__pdfmeta_tmpa_tl}
 407 \group_end:
 408 }
 409 }
 410 }
 411 }

Before writing the xml we check if there are embedded files we know of. For A-4 we
adjust the standard to A-4F is needed.

 412 \AddToHook{pdfmeta/xmp}
 413 {
 414 \pdfmeta_standard_verify:nF{no_embed_content}
 415 {
 416 \bool_lazy_or:nnT
 417 { ! \int_if_zero_p:n { \g_pdffile_embed_pdfa_int } }
 418 { ! \int_if_zero_p:n { \g_pdffile_embed_nonpdfa_int } }
 419 {
 420 \prop_get:NnNT\g__pdfmeta_standard_prop { name }\l__pdfmeta_tmpa_tl
 421 {
 422 \msg_warning:nne { pdf } { validation-failure }
 423 {
 424 Embedded~files~detected.\iow_newline:
 425 This~is~not~allowed~in~standard~\l__pdfmeta_tmpa_tl
 426 }
 427 }

21

 428 }
 429 }
 430 \pdfmeta_standard_verify:nF {only_pdfa_embed_content}
 431 {
 432 \int_if_zero:nF { \g_pdffile_embed_nonpdfa_int }
 433 {
 434 \prop_get:NnNT\g__pdfmeta_standard_prop { name }\l__pdfmeta_tmpa_tl
 435 {
 436 \str_if_eq:VnTF {\l__pdfmeta_tmpa_tl} { pdf/A-4 }
 437 {
 438 \prop_gset_eq:cc
 439 { g__pdfmeta_standard_prop }
 440 { g__pdfmeta_standard_pdf/A-4F_prop }
 441 \msg_warning:nne { pdf } { validation-failure }
 442 {
 443 Embedded~non-PDF~files~detected.\iow_newline:
 444 Switching~standard~from~PDF/A-4~to~PDF/A-4F
 445 }
 446 }
 447 {
 448 \msg_warning:nne { pdf } { validation-failure }
 449 {
 450 Embedded~non-PDF~files~detected.\iow_newline:
 451 This~is~not~allowed~in~standard~\l__pdfmeta_tmpa_tl
 452 }
 453 }
 454 }
 455 }
 456 }
 457 }

3.1.8 Colorprofiles and Outputintents

The following provides a minimum of interface to add a color profile and an outputintent
need for PDF/A for now. There will be need to extend it later, so we try for enough
generality.

Adding a profile and an intent is technically easy:

1. Embed the profile as stream with

 \pdf_object_unnamed_write:nn{fstream} {{/N~4}{XXX.icc}}

2. Write a /OutputIntent dictionary for this

\pdf_object_unnamed_write:ne {dict}
 {
 /Type /OutputIntent
 /S /GTS_PDFA1 % or GTS_PDFX or ISO_PDFE1 or ...
 /DestOutputProfile \pdf_object_ref_last: % ref the color profile
 /OutputConditionIdentifier ...
 ... %more info

 }

3. Reference the dictionary in the catalog:

22

\pdfmanagement_add:nne {Catalog}{OutputIntents}{\pdf_object_ref_last:}

But we need to do a bit more work, to get the interface right. The object for the profile
should be named, to allow l3color to reuse it if needed. And we need container to store
the profiles, to handle the standard requirements.

\g__pdfmeta_outputintents_prop This variable will hold the profiles for the subtypes. We assume that every subtype has
only only color profile.

 458 \prop_new:N \g__pdfmeta_outputintents_prop

(End of definition for \g__pdfmeta_outputintents_prop.)

Some keys to fill the property.

 459 \keys_define:nn { document / metadata }
 460 {
 461 colorprofiles .code:n =
 462 {
 463 \keys_set:nn { document / metadata / colorprofiles }{#1}
 464 }
 465 }
 466 \keys_define:nn { document / metadata / colorprofiles }
 467 {
 468 ,A .code:n =
 469 {
 470 \tl_if_blank:nF {#1}
 471 {
 472 \prop_gput:Nnn \g__pdfmeta_outputintents_prop
 473 { GTS_PDFA1 } {#1}
 474 }
 475 }
 476 ,a .code:n =
 477 {
 478 \tl_if_blank:nF {#1}
 479 {
 480 \prop_gput:Nnn \g__pdfmeta_outputintents_prop
 481 { GTS_PDFA1 } {#1}
 482 }
 483 }
 484 ,X .code:n =
 485 {
 486 \tl_if_blank:nF {#1}
 487 {
 488 \prop_gput:Nnn \g__pdfmeta_outputintents_prop
 489 { GTS_PDFX } {#1}
 490 }
 491 }
 492 ,x .code:n =
 493 {
 494 \tl_if_blank:nF {#1}
 495 {
 496 \prop_gput:Nnn \g__pdfmeta_outputintents_prop
 497 { GTS_PDFX } {#1}
 498 }

23

 499 }
 500 ,unknown .code:n =
 501 {
 502 \tl_if_blank:nF {#1}
 503 {
 504 \exp_args:NNo
 505 \prop_gput:Nnn \g__pdfmeta_outputintents_prop
 506 { \l_keys_key_str } {#1}
 507 }
 508 }
 509 }

At first we setup our two default profiles. This is internal as the public interface is still
undecided.

 510 \pdfdict_new:n {l_pdfmeta/outputintent}
 511 \pdfdict_put:nnn {l_pdfmeta/outputintent}
 512 {Type}{/OutputIntent}
 513 \prop_const_from_keyval:cn { c__pdfmeta_colorprofile_sRGB.icc}
 514 {
 515 ,OutputConditionIdentifier=IEC~sRGB
 516 ,Info=IEC~61966-2.1~Default~RGB~colour~space~-~sRGB
 517 ,RegistryName=http://www.iec.ch
 518 ,N = 3
 519 }
 520 \prop_const_from_keyval:cn { c__pdfmeta_colorprofile_FOGRA39L_coated.icc}
 521 {
 522 ,OutputConditionIdentifier=FOGRA39L~Coated
 523 ,Info={Offset~printing,~according~to~ISO~12647-2:2004/Amd~1,~OFCOM,~ %
 524 paper~type~1~or~2~=~coated~art,~115~g/m2,~tone~value~increase~
 525 curves~A~(CMY)~and~B~(K)}
 526 ,RegistryName=http://www.fogra.org
 527 ,N = 4
 528 }

__pdfmeta_embed_colorprofile:n
__pdfmeta_write_outputintent:nn

The commands embed the profile, and write the dictionary and add it to the catalog.
The first command should perhaps be moved to l3color as it needs such profiles too.
We used named objects so that we can check if the profile is already there. This is not
foolproof if paths are used.

 529 \cs_new_protected:Npn __pdfmeta_embed_colorprofile:n #1%#1 file name
 530 {
 531 \pdf_object_if_exist:nF { __color_icc_ #1 }
 532 {
 533 \pdf_object_new:n { __color_icc_ #1 }
 534 \pdf_object_write:nne { __color_icc_ #1 } { fstream }
 535 {
 536 {/N\c_space_tl
 537 \prop_item:cn{c__pdfmeta_colorprofile_#1}{N}
 538 }
 539 {#1}
 540 }
 541 }
 542 }

24

 543
 544 \cs_new_protected:Npn __pdfmeta_write_outputintent:nn #1 #2 %#1 file name, #2 subtype
 545 {
 546 \group_begin:
 547 \pdfdict_put:nne {l_pdfmeta/outputintent}{S}{/\str_convert_pdfname:n{#2}}
 548 \pdfdict_put:nne {l_pdfmeta/outputintent}
 549 {DestOutputProfile}
 550 {\pdf_object_ref:n{ __color_icc_ #1 }}
 551 \clist_map_inline:nn { OutputConditionIdentifier, Info, RegistryName }
 552 {
 553 \prop_get:cnNT
 554 { c__pdfmeta_colorprofile_#1}
 555 { ##1 }
 556 \l__pdfmeta_tmpa_tl
 557 {
 558 \pdf_string_from_unicode:nVN {utf8/string}\l__pdfmeta_tmpa_tl\l__pdfmeta_tmpa_str
 559 \pdfdict_put:nne
 560 {l_pdfmeta/outputintent}{##1}{\l__pdfmeta_tmpa_str}
 561 }
 562 }
 563 \pdf_object_unnamed_write:ne {dict}{\pdfdict_use:n {l_pdfmeta/outputintent} }
 564 \pdfmanagement_add:nne {Catalog}{OutputIntents}{\pdf_object_ref_last:}
 565 \group_end:
 566 }

(End of definition for __pdfmeta_embed_colorprofile:n and __pdfmeta_write_outputintent:nn.)

Now the verifying code. If no requirement is set we simply loop over the property

 567 \AddToHook{begindocument/end}
 568 {
 569 \pdfmeta_standard_verify:nTF {outputintent_A}
 570 {
 571 \prop_map_inline:Nn \g__pdfmeta_outputintents_prop
 572 {
 573 \prop_if_exist:cTF {c__pdfmeta_colorprofile_#2}
 574 {
 575 __pdfmeta_embed_colorprofile:n
 576 {#2}
 577 __pdfmeta_write_outputintent:nn
 578 {#2}
 579 {#1}
 580 }
 581 {
 582 \msg_warning:nnn{pdfmeta}{colorprofile-undefined}{#2}
 583 }
 584 }
 585 }

If an output intent is required for pdf/A we need to ensure, that the key of default
subtype has a value, as default we take sRGB.icc. Then we loop but take always the
same profile.

 586 {
 587 \exp_args:NNe

25

 588 \prop_if_in:NnF
 589 \g__pdfmeta_outputintents_prop
 590 { \pdfmeta_standard_item:n { outputintent_A } }
 591 {
 592 \exp_args:NNe
 593 \prop_gput:Nnn
 594 \g__pdfmeta_outputintents_prop
 595 { \pdfmeta_standard_item:n { outputintent_A } }
 596 { sRGB.icc }
 597 }
 598 \exp_args:NNe
 599 \prop_get:NnN
 600 \g__pdfmeta_outputintents_prop
 601 { \pdfmeta_standard_item:n { outputintent_A } }
 602 \l__pdfmeta_tmpb_tl
 603 \prop_if_exist:cTF {c__pdfmeta_colorprofile_\l__pdfmeta_tmpb_tl}
 604 {
 605 \exp_args:NV __pdfmeta_embed_colorprofile:n \l__pdfmeta_tmpb_tl
 606 \prop_map_inline:Nn \g__pdfmeta_outputintents_prop
 607 {
 608 \exp_args:NV
 609 __pdfmeta_write_outputintent:nn
 610 \l__pdfmeta_tmpb_tl
 611 { #1 }
 612 }
 613 }
 614 {
 615 \msg_warning:nne{pdfmeta}{colorprofile-undefined}{\l__pdfmeta_tmpb_tl}
 616 }
 617 }
 618 }

3.2 Regression test
This is simply a copy of the backend function.

 619 \cs_new_protected:Npn \pdfmeta_set_regression_data:
 620 { __pdf_backend_set_regression_data: }

4 XMP-Metadata implementation
\g__pdfmeta_xmp_bool This boolean decides if the metadata are included

 621 \bool_new:N\g__pdfmeta_xmp_bool
 622 \bool_gset_true:N \g__pdfmeta_xmp_bool

(End of definition for \g__pdfmeta_xmp_bool.)

Preset the two fields to avoid problems with standards.
 623 \hook_gput_code:nnn{pdfmanagement/add}{pdfmanagement}
 624 {
 625 \pdfmanagement_add:nne {Info}{Producer}{(\c_sys_engine_exec_str-\c_sys_engine_version_str)}
 626 \pdfmanagement_add:nne {Info}{Creator}{(LaTeX)}
 627 }

26

4.1 New document keys
 628 \cs_generate_variant:Nn\pdf_version_gset:n{e}

if the pdf version is wrong for the standard we force the highest possible.
 629 \cs_new_protected:Nn__pdfmeta_force_standard_pdfversion:
 630 {
 631 \pdfmeta_standard_verify:nnF { min_pdf_version }
 632 { \pdf_version: }
 633 {
 634 \pdfmeta_standard_verify:nTF { max_pdf_version }
 635 {
 636 \pdf_version_gset:n { 2.0 }
 637 }
 638 {
 639 \pdf_version_gset:e{ \pdfmeta_standard_item:n{ max_pdf_version } }
 640 }
 641 }
 642 \pdfmeta_standard_verify:nnF { max_pdf_version }
 643 { \pdf_version: }
 644 {
 645 \pdf_version_gset:e{ \pdfmeta_standard_item:n{ max_pdf_version } }
 646 }
 647 }

At begin document we then want to test if there is a version problem.
 648 \cs_new_protected:Npn __pdfmeta_check_standard_pdfversion:
 649 {
 650 \clist_map_inline:nn{A,UA,X}
 651 {
 652 \pdfmeta_standard_family:nn { ##1 }
 653 {
 654 \pdfmeta_standard_verify:nnF { min_pdf_version }
 655 { \pdf_version: }
 656 { \msg_warning:nneee {pdf}{wrong-pdfversion} %TODO make error
 657 {\pdf_version:}{low}
 658 {
 659 \pdfmeta_standard_item:n{name}
 660 }
 661 }
 662 \pdfmeta_standard_verify:nnF { max_pdf_version }
 663 { \pdf_version: }
 664 { \msg_warning:nneee {pdf}{wrong-pdfversion}
 665 {\pdf_version:}{high}
 666 {
 667 \pdfmeta_standard_item:n{name}
 668 }
 669 }
 670 }
 671 }
 672 }

 673 \keys_define:nn { document / metadata }
 674 {
 675 _pdfstandard .choices:nn =

27

 676 {A-1B,A-2A,A-2B,A-2U,A-3A,A-3B,A-3U,A-4}
 677 {
 678 \prop_gset_eq:Nc \g__pdfmeta_standard_A_prop { g__pdfmeta_standard_pdf/#1 _prop }
 679 \prop_gset_eq:NN \g__pdfmeta_standard_prop \g__pdfmeta_standard_A_prop
 680 __pdfmeta_force_standard_pdfversion:
 681 \AddToDocumentProperties [document]{pdfstandard}{#1}
 682 },
 683 _pdfstandard / A-4F .code:n =
 684 {
 685 \prop_gset_eq:Nc \g__pdfmeta_standard_A_prop { g__pdfmeta_standard_pdf/#1 _prop }
 686 \prop_gset_eq:NN \g__pdfmeta_standard_prop \g__pdfmeta_standard_A_prop
 687 __pdfmeta_force_standard_pdfversion:
 688 \AddToDocumentProperties [document]{pdfstandard}{A-4F}
 689 },
 690 _pdfstandard / A-4E .code:n =
 691 {
 692 \prop_gset_eq:Nc \g__pdfmeta_standard_A_prop { g__pdfmeta_standard_pdf/A-4E_prop }
 693 \prop_gset_eq:NN \g__pdfmeta_standard_prop \g__pdfmeta_standard_A_prop
 694 __pdfmeta_force_standard_pdfversion:
 695 \AddToDocumentProperties [document]{pdfstandard}{A-4E}
 696 },
 697 _pdfstandard / unknown .code:n =
 698 {
 699 \msg_error:nnn{pdf}{unknown-standard}{#1}
 700 },
 701 _pdfstandard / X-4 .code:n =
 702 {
 703 \prop_gset_eq:Nc \g__pdfmeta_standard_X_prop { g__pdfmeta_standard_pdf/X-4_prop }
 704 \AddToDocumentProperties [document]{pdfstandard-X}{PDF/X-4}
 705 __pdfmeta_xmp_add_pdfxid:
 706 },
 707 _pdfstandard / X-4P .code:n =
 708 {
 709 \prop_gset_eq:Nc \g__pdfmeta_standard_X_prop { g__pdfmeta_standard_pdf/X-4P_prop }
 710 \AddToDocumentProperties [document]{pdfstandard-X}{PDF/X-4p}
 711 __pdfmeta_xmp_add_pdfxid:
 712 },
 713 _pdfstandard / X-5G .code:n =
 714 {
 715 \prop_gset_eq:Nc \g__pdfmeta_standard_X_prop { g__pdfmeta_standard_pdf/X-5G_prop }
 716 \AddToDocumentProperties [document]{pdfstandard-X}{PDF/X-5g}
 717 __pdfmeta_xmp_add_pdfxid:
 718 },
 719 _pdfstandard / X-5N .code:n =
 720 {
 721 \prop_gset_eq:Nc \g__pdfmeta_standard_X_prop { g__pdfmeta_standard_pdf/X-5N_prop }
 722 \AddToDocumentProperties [document]{pdfstandard-X}{PDF/X-5n}
 723 __pdfmeta_xmp_add_pdfxid:
 724 },
 725 _pdfstandard / X-5PG .code:n =
 726 {
 727 \prop_gset_eq:Nc \g__pdfmeta_standard_X_prop { g__pdfmeta_standard_pdf/X-5PG_prop }
 728 \AddToDocumentProperties [document]{pdfstandard-X}{PDF/X-5pg}
 729 __pdfmeta_xmp_add_pdfxid:

28

 730 },
 731 _pdfstandard / X-6 .code:n =
 732 {
 733 \prop_gset_eq:Nc \g__pdfmeta_standard_X_prop { g__pdfmeta_standard_pdf/X-6_prop }
 734 \AddToDocumentProperties [document]{pdfstandard-X}{PDF/X-6}
 735 __pdfmeta_xmp_add_pdfxid:
 736 },
 737 _pdfstandard / X-6N .code:n =
 738 {
 739 \prop_gset_eq:Nc \g__pdfmeta_standard_X_prop { g__pdfmeta_standard_pdf/X-6N_prop }
 740 \AddToDocumentProperties [document]{pdfstandard-X}{PDF/X-6n}
 741 __pdfmeta_xmp_add_pdfxid:
 742 },
 743 _pdfstandard / X-6P .code:n =
 744 {
 745 \prop_gset_eq:Nc \g__pdfmeta_standard_X_prop { g__pdfmeta_standard_pdf/X-6P_prop }
 746 \AddToDocumentProperties [document]{pdfstandard-X}{PDF/X-6p}
 747 __pdfmeta_xmp_add_pdfxid:
 748 },
 749 _pdfstandard / UA-1 .code:n =
 750 {
 751 \prop_gset_eq:Nc \g__pdfmeta_standard_UA_prop { g__pdfmeta_standard_pdf/UA-1_prop }
 752 \pdfmeta_standard_family:nn{UA}{ __pdfmeta_force_standard_pdfversion: }
 753 \AddToDocumentProperties [document]{pdfstandard-UA}{{1}{}}
 754 \AddToHook{begindocument/before}
 755 {
 756 \prop_gput:Nnn \g__pdfmeta_standard_prop {omit_CID}{}
 757 }
 758 },

currently it is not possible to merge requirements - these need some thoughts as every
standard has some common keys like the name or the yes. We therefore add some
requirements manually.

 759 _pdfstandard / UA-2 .code:n =
 760 {
 761 \prop_gset_eq:Nc \g__pdfmeta_standard_UA_prop { g__pdfmeta_standard_pdf/UA-2_prop }
 762 \pdfmeta_standard_family:nn{UA}{__pdfmeta_force_standard_pdfversion:}
 763 \AddToDocumentProperties [document]{pdfstandard-UA}{{2}{2024}}

2025-06-11 Trailer_no_Info is only a should not a shall in UA-2 so we do not force it.
 764 %\AddToHook{begindocument/before}
 765 %{\prop_gput:Nnn \g__pdfmeta_standard_prop {Trailer_no_Info}{}}
 766 \AddToHook{begindocument/before}
 767 {
 768 __pdfmeta_xmp_wtpdf_accessibility_declaration:
 769 __pdfmeta_xmp_wtpdf_reuse_declaration:
 770 }
 771 },
 772 xmp .choice:,
 773 xmp / true .code:n = { \bool_gset_true:N \g__pdfmeta_xmp_bool },
 774 xmp / false .code:n = { \bool_gset_false:N \g__pdfmeta_xmp_bool},
 775 xmp .default:n = true,

These keys allow to disable or force the wtpdf declarations. Currently the content can not
be changed and once they have been disabled there are gone. This will perhaps change.

29

 776 xmp / wtpdf .code:n =
 777 {
 778 \keys_set:nn {__pdfmeta/xmp}{#1}
 779 },
 780 }
 781 \keys_define:nn {__pdfmeta/xmp}
 782 {
 783 reuse .choice:,
 784 reuse / true .code:n = __pdfmeta_xmp_wtpdf_reuse_declaration:,
 785 reuse / false .code:n =
 786 {
 787 \cs_set_eq:NN __pdfmeta_xmp_wtpdf_reuse_declaration: \prg_do_nothing:
 788 },
 789 accessibility .choice:,
 790 accessibility / true .code:n = __pdfmeta_xmp_wtpdf_accessibility_declaration:,
 791 accessibility /false .code:n =
 792 {
 793 \cs_set_eq:NN __pdfmeta_xmp_wtpdf_accessibility_declaration: \prg_do_nothing:
 794 },
 795 }

XMP debugging option
 796 \bool_new:N \g__pdfmeta_xmp_export_bool
 797 \str_new:N \g__pdfmeta_xmp_export_str
 798
 799 \keys_define:nn { document / metadata }
 800 {
 801 ,debug .code:n =
 802 {
 803 \keys_set:nn { document / metadata / debug } {#1}
 804 }
 805 ,debug / xmp-export .choice:
 806 ,debug / xmp-export / true .code:n=
 807 {
 808 \bool_gset_true:N \g__pdfmeta_xmp_export_bool
 809 \str_gset_eq:NN \g__pdfmeta_xmp_export_str \c_sys_jobname_str
 810 }
 811 ,debug / xmp-export / false .code:n =
 812 {
 813 \bool_gset_false:N \g__pdfmeta_xmp_export_bool
 814 }
 815 ,debug / xmp-export /unknown .code:n =
 816 {
 817 \bool_gset_true:N \g__pdfmeta_xmp_export_bool
 818 \str_gset:Nn \g__pdfmeta_xmp_export_str { #1 }
 819 }
 820 ,debug / xmp-export .default:n = true
 821 }

4.2 Messages
 822 \msg_new:nnn{pdfmeta}{xmp-defined}{The~XMP~#1~`#2`~is~already~declared}
 823 \msg_new:nnn{pdfmeta}{xmp-undefined}{The~XMP~#1~`#2`~is~undefined}
 824 \msg_new:nnn{pdfmeta}{colorprofile-undefined}{The~colorprofile~`#1`~is~unknown}

30

4.3 Some helper commands
4.3.1 Generate a BOM

__pdfmeta_xmp_generate_bom:

 825 \bool_lazy_or:nnTF
 826 { \sys_if_engine_luatex_p: }
 827 { \sys_if_engine_xetex_p: }
 828 {
 829 \cs_new:Npn __pdfmeta_xmp_generate_bom:
 830 { \char_generate:nn {"FEFF}{12} }
 831 }
 832 {
 833 \cs_new:Npn __pdfmeta_xmp_generate_bom:
 834 {
 835 \char_generate:nn {"EF}{12}
 836 \char_generate:nn {"BB}{12}
 837 \char_generate:nn {"BF}{12}
 838 }
 839 }

(End of definition for __pdfmeta_xmp_generate_bom:.)

4.3.2 Indentation

We provide a command which indents the xml based on a counter, and one which accepts
a fix number. The counter can be increased and decreased.

\l__pdfmeta_xmp_indent_int

 840 \int_new:N \l__pdfmeta_xmp_indent_int

(End of definition for \l__pdfmeta_xmp_indent_int.)

__pdfmeta_xmp_indent:
__pdfmeta_xmp_indent:n

__pdfmeta_xmp_incr_indent:
__pdfmeta_xmp_decr_indent:

 841 \cs_new:Npn __pdfmeta_xmp_indent:
 842 {
 843 \iow_newline:
 844 \prg_replicate:nn {\l__pdfmeta_xmp_indent_int}{\c_space_tl}
 845 }
 846
 847 \cs_new:Npn __pdfmeta_xmp_indent:n #1
 848 {
 849 \iow_newline:
 850 \prg_replicate:nn {#1}{\c_space_tl}
 851 }
 852
 853 \cs_new_protected:Npn __pdfmeta_xmp_incr_indent:
 854 {
 855 \int_incr:N \l__pdfmeta_xmp_indent_int
 856 }
 857
 858 \cs_new_protected:Npn __pdfmeta_xmp_decr_indent:

31

 859 {
 860 \int_decr:N \l__pdfmeta_xmp_indent_int
 861 }

(End of definition for __pdfmeta_xmp_indent: and others.)

4.3.3 Date and time handling

If the date is given in PDF format we have to split it to create the XMP format. We
use a precompiled regex for this. To some extend the regex can also handle incomplete
dates.

\l__pdfmeta_xmp_date_regex

 862 \regex_new:N \l__pdfmeta_xmp_date_regex
 863 \regex_set:Nn \l__pdfmeta_xmp_date_regex
 864 {D:(\d{4})(\d{2})(\d{2})(\d{2})?(\d{2})?(\d{2})?([Z\+\-])?(?:(\d{2})\')?(?:(\d{2})\')?}

(End of definition for \l__pdfmeta_xmp_date_regex.)

__pdfmeta_xmp_date_split:nN This command takes a date in PDF format, splits it with the regex and stores the captures
in a sequence.

 865 \cs_new_protected:Npn __pdfmeta_xmp_date_split:nN #1 #2 %#1 date, #2 seq
 866 {
 867 \regex_split:NnN \l__pdfmeta_xmp_date_regex {#1} #2
 868 }
 869 \cs_generate_variant:Nn __pdfmeta_xmp_date_split:nN {VN,eN}

(End of definition for __pdfmeta_xmp_date_split:nN.)

__pdfmeta_xmp_print_date:N This prints the date stored in a sequence as created by the previous command.

 870 \cs_new:Npn__pdfmeta_xmp_print_date:N #1 % seq
 871 {
 872 \tl_if_blank:eTF { \seq_item:Nn #1 {1} }
 873 {
 874 \seq_item:Nn #1 {2} %year
 875 -
 876 \seq_item:Nn #1 {3} %month
 877 -
 878 \seq_item:Nn #1 {4} % day
 879 \tl_if_blank:eF
 880 { \seq_item:Nn #1 {5} }
 881 { T \seq_item:Nn #1 {5} } %hour
 882 \tl_if_blank:eF
 883 { \seq_item:Nn #1 {6} }
 884 { : \seq_item:Nn #1 {6} } %minutes
 885 \tl_if_blank:eF
 886 { \seq_item:Nn #1 {7} }
 887 { : \seq_item:Nn #1 {7} } %seconds
 888 \seq_item:Nn #1 {8} %Z,+,-
 889 \seq_item:Nn #1 {9}
 890 \tl_if_blank:eF

32

 891 { \seq_item:Nn #1 {10} }
 892 { : \seq_item:Nn #1 {10} }
 893 }
 894 {
 895 \seq_item:Nn #1 {1}
 896 }
 897 }

(End of definition for __pdfmeta_xmp_print_date:N.)

\l__pdfmeta_xmp_currentdate_tl
\l__pdfmeta_xmp_currentdate_seq

The tl var contains the date of the log-file in PDF format, the seq the result split with
the regex.

 898 \tl_new:N \l__pdfmeta_xmp_currentdate_tl
 899 \seq_new:N \l__pdfmeta_xmp_currentdate_seq

(End of definition for \l__pdfmeta_xmp_currentdate_tl and \l__pdfmeta_xmp_currentdate_seq.)

__pdfmeta_xmp_date_get:nNN This checks a document property and if empty uses the current date.

 900 \cs_new_protected:Npn __pdfmeta_xmp_date_get:nNN #1 #2 #3
 901 %#1 property, #2 tl var with PDF date, #3 seq for split date
 902 {
 903 \tl_set:Ne #2 { \GetDocumentProperties{#1} }
 904 \tl_if_blank:VTF #2
 905 {
 906 \seq_set_eq:NN #3 \l__pdfmeta_xmp_currentdate_seq
 907 \tl_set_eq:NN #2 \l__pdfmeta_xmp_currentdate_tl
 908 }
 909 {
 910 __pdfmeta_xmp_date_split:VN #2 #3
 911 }
 912 }

(End of definition for __pdfmeta_xmp_date_get:nNN.)

4.3.4 UUID

We need a command to generate an uuid

__pdfmeta_xmp_create_uuid:nN

 913 \cs_new_protected:Npn __pdfmeta_xmp_create_uuid:nN #1 #2
 914 {
 915 \str_set:Ne#2 {\str_lowercase:f{\tex_mdfivesum:D{#1}}}
 916 \str_set:Ne#2
 917 { uuid:
 918 \str_range:Nnn #2{1}{8}
 919 -\str_range:Nnn#2{9}{12}
 920 -4\str_range:Nnn#2{13}{15}
 921 -8\str_range:Nnn#2{16}{18}
 922 -\str_range:Nnn#2{19}{30}
 923 }
 924 }

(End of definition for __pdfmeta_xmp_create_uuid:nN.)

33

4.3.5 Purifying and escaping of strings

__pdfmeta_xmp_sanitize:nN We have to sanitize the user input. For this we pass it through \text_purify and then
replace a few special chars.

 925 \cs_new_protected:Npn __pdfmeta_xmp_sanitize:nN #1 #2
 926 %#1 input string, #2 str with the output
 927 {
 928 \group_begin:
 929 \text_declare_purify_equivalent:Nn \& {\tl_to_str:N & }
 930 \text_declare_purify_equivalent:Nn \texttilde {\c_tilde_str}
 931 \tl_set:Ne \l__pdfmeta_tmpa_tl { \text_purify:n {#1} }
 932 \str_gset:Ne \g__pdfmeta_tmpa_str { \tl_to_str:N \l__pdfmeta_tmpa_tl }
 933 \str_greplace_all:Nnn\g__pdfmeta_tmpa_str {&}{&}
 934 \str_greplace_all:Nnn\g__pdfmeta_tmpa_str {<}{<}
 935 \str_greplace_all:Nnn\g__pdfmeta_tmpa_str {>}{>}
 936 \str_greplace_all:Nnn\g__pdfmeta_tmpa_str {"}{"}
 937 \group_end:
 938 \str_set_eq:NN #2 \g__pdfmeta_tmpa_str
 939 }
 940
 941 \cs_generate_variant:Nn__pdfmeta_xmp_sanitize:nN {VN}

(End of definition for __pdfmeta_xmp_sanitize:nN.)

4.4 Language handling
The language of the metadata is used in various attributes, so we store it in command.

\l__pdfmeta_xmp_doclang_tl
\l__pdfmeta_xmp_metalang_tl

 942 \tl_new:N \l__pdfmeta_xmp_doclang_tl
 943 \tl_new:N \l__pdfmeta_xmp_metalang_tl

(End of definition for \l__pdfmeta_xmp_doclang_tl and \l__pdfmeta_xmp_metalang_tl.)

The language is retrieved at the start of the packet. We assume that lang is always
set and so don’t use the x-default value of hyperxmp.

\l__pdfmeta_xmp_lang_regex

 944 \regex_new:N\l__pdfmeta_xmp_lang_regex
 945 \regex_set:Nn\l__pdfmeta_xmp_lang_regex {\A\[([A-Za-z\-]+)\](.*)}

(End of definition for \l__pdfmeta_xmp_lang_regex.)

 946 \cs_new_protected:Npn __pdfmeta_xmp_lang_get:nNN #1 #2 #3
 947 % #1 text, #2 tl var for lang match (or default), #3 tl var for text
 948 {
 949 \regex_extract_once:NnN \l__pdfmeta_xmp_lang_regex {#1}\l__pdfmeta_tmpa_seq
 950 \seq_if_empty:NTF \l__pdfmeta_tmpa_seq
 951 {
 952 \tl_set:Nn #2 \l__pdfmeta_xmp_metalang_tl
 953 \tl_set:Nn #3 {#1}
 954 }

34

 955 {
 956 \tl_set:Ne #2 {\seq_item:Nn\l__pdfmeta_tmpa_seq{2}}
 957 \tl_set:Ne #3 {\seq_item:Nn\l__pdfmeta_tmpa_seq{3}}
 958 }
 959 }
 960 \cs_generate_variant:Nn __pdfmeta_xmp_lang_get:nNN {eNN,VNN}

4.5 Filling the packet
This tl var that holds the whole packet

\g__pdfmeta_xmp_packet_tl

 961 \tl_new:N \g__pdfmeta_xmp_packet_tl

(End of definition for \g__pdfmeta_xmp_packet_tl.)

4.5.1 Helper commands to add lines and lists

__pdfmeta_xmp_add_packet_chunk:n This is the most basic command. It is meant to produce a line and will use the current
indent.

 962 \cs_new_protected:Npn __pdfmeta_xmp_add_packet_chunk:n #1
 963 {
 964 \tl_gput_right:Ne\g__pdfmeta_xmp_packet_tl
 965 {
 966 __pdfmeta_xmp_indent: \exp_not:n{#1}
 967 }
 968 }
 969 \cs_generate_variant:Nn __pdfmeta_xmp_add_packet_chunk:n {e}

(End of definition for __pdfmeta_xmp_add_packet_chunk:n.)

__pdfmeta_xmp_add_packet_chunk:nN This is the most basic command. It is meant to produce a line and will use the current
indent.

 970 \cs_new_protected:Npn __pdfmeta_xmp_add_packet_chunk:nN #1 #2
 971 {
 972 \tl_put_right:Ne#2
 973 {
 974 __pdfmeta_xmp_indent: \exp_not:n{#1}
 975 }
 976 }
 977 \cs_generate_variant:Nn __pdfmeta_xmp_add_packet_chunk:nN {eN}

(End of definition for __pdfmeta_xmp_add_packet_chunk:nN.)

__pdfmeta_xmp_add_packet_open:nn This commands opens a xml structure and increases the indent.

 978 \cs_new_protected:Npn __pdfmeta_xmp_add_packet_open:nn #1 #2 %#1 prefix #2 name
 979 {
 980 __pdfmeta_xmp_add_packet_chunk:n {<#1:#2>}
 981 __pdfmeta_xmp_incr_indent:
 982 }
 983 \cs_generate_variant:Nn __pdfmeta_xmp_add_packet_open:nn {ne}

35

(End of definition for __pdfmeta_xmp_add_packet_open:nn.)

__pdfmeta_xmp_add_packet_open_attr:nnn This commands opens a xml structure too but allows also to give an attribute.

 984 \cs_new_protected:Npn __pdfmeta_xmp_add_packet_open_attr:nnn #1 #2 #3
 985 %#1 prefix #2 name #3 attr
 986 {
 987 __pdfmeta_xmp_add_packet_chunk:n {<#1:#2~#3>}
 988 __pdfmeta_xmp_incr_indent:
 989 }
 990 \cs_generate_variant:Nn __pdfmeta_xmp_add_packet_open_attr:nnn {nne}

(End of definition for __pdfmeta_xmp_add_packet_open_attr:nnn.)

__pdfmeta_xmp_add_packet_close:nn This closes a structure and decreases the indent.

 991 \cs_new_protected:Npn __pdfmeta_xmp_add_packet_close:nn #1 #2 %#1 prefix #2:name
 992 {
 993 __pdfmeta_xmp_decr_indent:
 994 __pdfmeta_xmp_add_packet_chunk:n {</#1:#2>}
 995 }

(End of definition for __pdfmeta_xmp_add_packet_close:nn.)

__pdfmeta_xmp_add_packet_line:nnn This will produce a full line with open and closing xml. The content is sanitized. We
test if there is content to be able to suppress data which has not be set.

 996 \cs_new_protected:Npn __pdfmeta_xmp_add_packet_line:nnn #1 #2 #3
 997 %#1 prefix #2 name #3 content
 998 {
 999 \tl_if_blank:nF {#3}
1000 {
1001 __pdfmeta_xmp_sanitize:nN {#3}\l__pdfmeta_tmpa_str
1002 __pdfmeta_xmp_add_packet_chunk:e {<#1:#2>\l__pdfmeta_tmpa_str</#1:#2>}
1003 }
1004 }
1005 \cs_generate_variant:Nn __pdfmeta_xmp_add_packet_line:nnn {nne,nnV,nee}

(End of definition for __pdfmeta_xmp_add_packet_line:nnn.)

__pdfmeta_xmp_add_packet_line:nnnN This will produce a full line with open and closing xml and store it in the given tl-
var. This allows to prebuild blocks and then to test if there are empty. The content is
sanitized. We test if there is content to be able to suppress data which has not be set.

1006 \cs_new_protected:Npn __pdfmeta_xmp_add_packet_line:nnnN #1 #2 #3 #4
1007 %#1 prefix #2 name #3 content #4 tl_var to prebuilt.
1008 {
1009 \tl_if_blank:nF {#3}
1010 {
1011 __pdfmeta_xmp_sanitize:nN {#3}\l__pdfmeta_tmpa_str
1012 __pdfmeta_xmp_add_packet_chunk:eN {<#1:#2>\l__pdfmeta_tmpa_str</#1:#2>} #4
1013 }
1014 }
1015 \cs_generate_variant:Nn __pdfmeta_xmp_add_packet_line:nnnN {nneN}

36

(End of definition for __pdfmeta_xmp_add_packet_line:nnnN.)

__pdfmeta_xmp_add_packet_line_attr:nnnn A similar command with attribute

1016 \cs_new_protected:Npn __pdfmeta_xmp_add_packet_line_attr:nnnn #1 #2 #3 #4
1017 %#1 prefix #2 name #3 attribute #4 content
1018 {
1019 \tl_if_blank:nF {#4}
1020 {
1021 __pdfmeta_xmp_sanitize:nN {#4}\l__pdfmeta_tmpa_str
1022 __pdfmeta_xmp_add_packet_chunk:e {<#1:#2~#3>\l__pdfmeta_tmpa_str</#1:#2>}
1023 }
1024 }
1025 \cs_generate_variant:Nn __pdfmeta_xmp_add_packet_line_attr:nnnn {nnee,nneV}

(End of definition for __pdfmeta_xmp_add_packet_line_attr:nnnn.)

__pdfmeta_xmp_add_packet_line_default:nnnn

1026 \cs_new_protected:Npn __pdfmeta_xmp_add_packet_line_default:nnnn #1 #2 #3 #4
1027 % #1 prefix #2 name #3 default #4 content
1028 {
1029 \tl_if_blank:nTF { #4 }
1030 {
1031 \tl_set:Nn \l__pdfmeta_tmpa_tl {#3}
1032 }
1033 {
1034 \tl_set:Nn \l__pdfmeta_tmpa_tl {#4}
1035 }
1036 __pdfmeta_xmp_add_packet_line:nnV {#1}{#2}\l__pdfmeta_tmpa_tl
1037 }
1038 \cs_generate_variant:Nn __pdfmeta_xmp_add_packet_line_default:nnnn {nnee}

(End of definition for __pdfmeta_xmp_add_packet_line_default:nnnn.)

Some data are stored as unordered (Bag) or ordered lists (Seq) or (Alt). The first variant
are for simple text without language support:

1039 \cs_new_protected:Npn __pdfmeta_xmp_add_packet_list_simple:nnnn #1 #2 #3 #4
1040 %#1 prefix, #2 name, #3 type (Seq/Bag/Alt) #4 a clist
1041 {
1042 \clist_if_empty:nF { #4 }
1043 {
1044 __pdfmeta_xmp_add_packet_open:nn {#1}{#2}
1045 __pdfmeta_xmp_add_packet_open:nn {rdf}{#3}
1046 \clist_map_inline:nn {#4}
1047 {
1048 __pdfmeta_xmp_add_packet_line:nnn
1049 {rdf}{li}{##1}
1050 }
1051 __pdfmeta_xmp_add_packet_close:nn{rdf}{#3}
1052 __pdfmeta_xmp_add_packet_close:nn {#1}{#2}
1053 }
1054 }
1055 \cs_generate_variant:Nn __pdfmeta_xmp_add_packet_list_simple:nnnn {nnnV,nnne}

37

Here we check also for the language.

1056 \cs_new_protected:Npn __pdfmeta_xmp_add_packet_list:nnnn #1 #2 #3 #4
1057 %#1 prefix, #2 name, #3 type (Seq/Bag/Alt) #4 a clist
1058 {
1059 \clist_if_empty:nF { #4 }
1060 {
1061 __pdfmeta_xmp_add_packet_open:nn {#1}{#2}
1062 __pdfmeta_xmp_add_packet_open:nn {rdf}{#3}
1063 \clist_map_inline:nn {#4}
1064 {
1065 __pdfmeta_xmp_lang_get:nNN {##1}\l__pdfmeta_tmpa_tl\l__pdfmeta_tmpb_tl

change 2024-02-22. There should be if possible a x-default entry as some viewers need
that. So if the language is equal to the main language we use that. This assumes that
the user hasn’t marked every entry as some other language! x-default has to be the first
entry, see issue #92, so we have to go through the list twice.

1066 \tl_if_eq:eeT{\l__pdfmeta_tmpa_tl}{\l__pdfmeta_xmp_metalang_tl}
1067 {
1068 __pdfmeta_xmp_add_packet_line_attr:nneV
1069 {rdf}{li}{xml:lang="x-default" }\l__pdfmeta_tmpb_tl
1070 __pdfmeta_xmp_add_packet_line_attr:nneV
1071 {rdf}{li}{xml:lang="\l__pdfmeta_tmpa_tl" }\l__pdfmeta_tmpb_tl
1072 }
1073 }
1074 \clist_map_inline:nn {#4}
1075 {
1076 __pdfmeta_xmp_lang_get:nNN {##1}\l__pdfmeta_tmpa_tl\l__pdfmeta_tmpb_tl
1077 \tl_if_eq:eeF{\l__pdfmeta_tmpa_tl}{\l__pdfmeta_xmp_metalang_tl}
1078 {
1079 __pdfmeta_xmp_add_packet_line_attr:nneV
1080 {rdf}{li}{xml:lang="\l__pdfmeta_tmpa_tl" }\l__pdfmeta_tmpb_tl
1081 }
1082 }
1083 __pdfmeta_xmp_add_packet_close:nn{rdf}{#3}
1084 __pdfmeta_xmp_add_packet_close:nn {#1}{#2}
1085 }
1086 }
1087 \cs_generate_variant:Nn __pdfmeta_xmp_add_packet_list:nnnn {nnne}

4.5.2 Building the main packet

__pdfmeta_xmp_build_packet: This is the main command to build the packet. As data has to be set and collected first,
it will be expanded rather late in the document.

1088 \cs_new_protected:Npn __pdfmeta_xmp_build_packet:
1089 {

Get the main languages

1090 \tl_set:Ne \l__pdfmeta_xmp_doclang_tl {\GetDocumentProperties{document/lang}}
1091 \tl_set:Ne \l__pdfmeta_xmp_metalang_tl {\GetDocumentProperties{hyperref/pdfmetalang}}
1092 \tl_if_blank:VT \l__pdfmeta_xmp_metalang_tl
1093 { \cs_set_eq:NN \l__pdfmeta_xmp_metalang_tl\l__pdfmeta_xmp_doclang_tl}

38

we preprocess a number of data to be able to suppress them and their schema if there
are unused. Currently only done for iptc

1094 __pdfmeta_xmp_build_iptc_data:N \l__pdfmeta_xmp_iptc_data_tl
1095 \tl_if_empty:NT \l__pdfmeta_xmp_iptc_data_tl
1096 {
1097 \seq_remove_all:Nn \l__pdfmeta_xmp_schema_seq { Iptc4xmpCore }
1098 }

The start of the package. No need to try to juggle with catcode, this is fix text

1099 __pdfmeta_xmp_add_packet_chunk:e
1100 {<?xpacket~begin="__pdfmeta_xmp_generate_bom:"~id="W5M0MpCehiHzreSzNTczkc9d"?>}
1101 __pdfmeta_xmp_add_packet_open:nn{x}{xmpmeta~xmlns:x="adobe:ns:meta/"}
1102 __pdfmeta_xmp_add_packet_open:ne{rdf}
1103 {RDF~xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns\c_hash_str"}

The rdf namespaces

1104 __pdfmeta_xmp_add_packet_open_attr:nne
1105 {rdf}{Description}{rdf:about="" \g__pdfmeta_xmp_xmlns_tl}

The extensions

1106 __pdfmeta_xmp_add_packet_open:nn{pdfaExtension}{schemas}
1107 __pdfmeta_xmp_add_packet_open:nn {rdf}{Bag}
1108 \seq_map_inline:Nn \l__pdfmeta_xmp_schema_seq
1109 {
1110 \tl_use:c { g__pdfmeta_xmp_schema_##1_tl }
1111 }
1112 __pdfmeta_xmp_add_packet_close:nn {rdf}{Bag}
1113 __pdfmeta_xmp_add_packet_close:nn {pdfaExtension}{schemas}

Now starts the part with the data.

1114 % data
1115 __pdfmeta_xmp_build_pdf:
1116 __pdfmeta_xmp_build_xmpRights:
1117 __pdfmeta_xmp_build_standards: %pdfaid,pdfxid,pdfuaid
1118 __pdfmeta_xmp_build_pdfd:
1119 __pdfmeta_xmp_build_dc:
1120 __pdfmeta_xmp_build_photoshop:
1121 __pdfmeta_xmp_build_xmp:
1122 __pdfmeta_xmp_build_xmpMM:
1123 __pdfmeta_xmp_build_prism:
1124 __pdfmeta_xmp_build_iptc:
1125 __pdfmeta_xmp_build_tdm:
1126 __pdfmeta_xmp_build_user: %user additions
1127 % end
1128 __pdfmeta_xmp_add_packet_close:nn {rdf}{Description}
1129 __pdfmeta_xmp_add_packet_close:nn {rdf}{RDF}
1130 __pdfmeta_xmp_add_packet_close:nn {x}{xmpmeta}
1131 \int_set:Nn \l__pdfmeta_xmp_indent_int{20}

39

1132 \prg_replicate:nn{10}{__pdfmeta_xmp_add_packet_chunk:n {}}
1133 \int_zero:N \l__pdfmeta_xmp_indent_int
1134 __pdfmeta_xmp_add_packet_chunk:n {<?xpacket~end="w"?>}
1135 }

(End of definition for __pdfmeta_xmp_build_packet:.)

4.6 Building the chunks: rdf namespaces
This is the list of external names spaces. They are rather simple, and we store them
directly into a string. Special chars should be escaped properly, see e.g. \c_hash_str
for the hash.

\g__pdfmeta_xmp_xmlns_tl
\g__pdfmeta_xmp_xmlns_prop

The string will hold the prepared chunk, the prop stores the name spaces so that one can
check on the user level for duplicates.

1136 \str_new:N \g__pdfmeta_xmp_xmlns_tl
1137 \prop_new:N \g__pdfmeta_xmp_xmlns_prop

(End of definition for \g__pdfmeta_xmp_xmlns_tl and \g__pdfmeta_xmp_xmlns_prop.)

__pdfmeta_xmp_xmlns_new:nn

1138 \cs_new_protected:Npn __pdfmeta_xmp_xmlns_new:nn #1 #2
1139 {
1140 \prop_gput:Nnn \g__pdfmeta_xmp_xmlns_prop {#1}{#2}
1141 \tl_gput_right:Ne \g__pdfmeta_xmp_xmlns_tl
1142 {
1143 __pdfmeta_xmp_indent:n{4} xmlns:\exp_not:n{#1="#2"}
1144 }
1145 }

(End of definition for __pdfmeta_xmp_xmlns_new:nn.)

Now we fill the data. The list is more or less the same as in hyperxmp The pdfxid entry
is only added if an X standard is used, see issue #50 and the schema below.

1146 __pdfmeta_xmp_xmlns_new:nn {pdf} {http://ns.adobe.com/pdf/1.3/}
1147 __pdfmeta_xmp_xmlns_new:nn {xmpRights}{http://ns.adobe.com/xap/1.0/rights/}
1148 __pdfmeta_xmp_xmlns_new:nn {dc} {http://purl.org/dc/elements/1.1/}
1149 __pdfmeta_xmp_xmlns_new:nn {photoshop}{http://ns.adobe.com/photoshop/1.0/}
1150 __pdfmeta_xmp_xmlns_new:nn {xmp} {http://ns.adobe.com/xap/1.0/}
1151 __pdfmeta_xmp_xmlns_new:nn {xmpMM} {http://ns.adobe.com/xap/1.0/mm/}
1152 __pdfmeta_xmp_xmlns_new:nn {stEvt}
1153 {http://ns.adobe.com/xap/1.0/sType/ResourceEvent\c_hash_str}
1154 __pdfmeta_xmp_xmlns_new:nn {pdfaid} {http://www.aiim.org/pdfa/ns/id/}
1155 __pdfmeta_xmp_xmlns_new:nn {pdfuaid} {http://www.aiim.org/pdfua/ns/id/}
1156 __pdfmeta_xmp_xmlns_new:nn {pdfx} {http://ns.adobe.com/pdfx/1.3/}
1157 %__pdfmeta_xmp_xmlns_new:nn {pdfxid} {http://www.npes.org/pdfx/ns/id/}
1158 __pdfmeta_xmp_xmlns_new:nn {prism} {http://prismstandard.org/namespaces/basic/3.0/}
1159 %__pdfmeta_xmp_xmlns_new:nn {jav} {http://www.niso.org/schemas/jav/1.0/}
1160 %__pdfmeta_xmp_xmlns_new:nn {xmpTPg} {http://ns.adobe.com/xap/1.0/t/pg/}
1161 __pdfmeta_xmp_xmlns_new:nn {stFnt} {http://ns.adobe.com/xap/1.0/sType/Font\c_hash_str}
1162 __pdfmeta_xmp_xmlns_new:nn {Iptc4xmpCore}{http://iptc.org/std/Iptc4xmpCore/1.0/xmlns/}

40

1163 __pdfmeta_xmp_xmlns_new:nn {pdfaExtension}{http://www.aiim.org/pdfa/ns/extension/}
1164 __pdfmeta_xmp_xmlns_new:nn {pdfaSchema}{http://www.aiim.org/pdfa/ns/schema\c_hash_str}
1165 __pdfmeta_xmp_xmlns_new:nn {pdfaProperty}{http://www.aiim.org/pdfa/ns/property\c_hash_str}
1166 __pdfmeta_xmp_xmlns_new:nn {pdfaType} {http://www.aiim.org/pdfa/ns/type\c_hash_str}
1167 __pdfmeta_xmp_xmlns_new:nn {pdfaField}{http://www.aiim.org/pdfa/ns/field\c_hash_str}
1168 __pdfmeta_xmp_xmlns_new:nn {tdm}{http://www.w3.org/ns/tdmrep/}

4.7 Building the chunks: Extensions
In this part local name spaces or additional names in a name space can be declared. A
“ schema” declaration consist of the declaration of the name, uri and prefix which then
surrounds a bunch of property declarations. The current code doesn’t support all syntax
options but sticks to what is used in hyperxmp and pdfx. If needed it can be extended
later.

\l__pdfmeta_xmp_schema_seq This variable will hold the list of prefix so that we can loop to produce the final XML

1169 \seq_new:N \l__pdfmeta_xmp_schema_seq

(End of definition for \l__pdfmeta_xmp_schema_seq.)

__pdfmeta_xmp_schema_new:nnn With this command a new schema can be declared. The main tl contains the XML
wrapper code, it then includes the list of properties which are created with the next
command.

1170 \cs_new_protected:Npn __pdfmeta_xmp_schema_new:nnn #1 #2 #3
1171 %#1 name #2 prefix, #3 text
1172 {
1173 \tl_if_exist:cTF { g__pdfmeta_xmp_schema_#2_tl }
1174 {
1175 \msg_warning:nnnn{pdfmeta}{xmp-defined}{schema}{#2}
1176 }
1177 {
1178 \seq_put_right:Nn \l__pdfmeta_xmp_schema_seq { #2 }
1179 \tl_new:c { g__pdfmeta_xmp_schema_#2_tl }
1180 \tl_new:c { g__pdfmeta_xmp_schema_#2_properties_tl }
1181 \tl_gput_right:cn { g__pdfmeta_xmp_schema_#2_tl }
1182 {
1183 __pdfmeta_xmp_add_packet_open_attr:nnn{rdf}{li}{rdf:parseType="Resource"}
1184 __pdfmeta_xmp_add_packet_line:nnn {pdfaSchema}{schema}{#1}
1185 __pdfmeta_xmp_add_packet_line:nnn {pdfaSchema}{prefix}{#2}
1186 __pdfmeta_xmp_add_packet_line:nnn {pdfaSchema}{namespaceURI}{#3}
1187 __pdfmeta_xmp_add_packet_open:nn {pdfaSchema}{property}
1188 __pdfmeta_xmp_add_packet_open:nn{rdf}{Seq}
1189 \tl_use:c { g__pdfmeta_xmp_schema_#2_properties_tl }
1190 __pdfmeta_xmp_add_packet_close:nn{rdf}{Seq}
1191 __pdfmeta_xmp_add_packet_close:nn {pdfaSchema}{property}
1192 \cs_if_exist_use:c {__pdfmeta_xmp_schema_#2_additions:}
1193 __pdfmeta_xmp_add_packet_close:nn{rdf}{li}
1194 }
1195 }
1196 }

(End of definition for __pdfmeta_xmp_schema_new:nnn.)

41

__pdfmeta_xmp_property_new:nnnnn This adds a property to a schema.

1197 \prop_new:N\g__pdfmeta_xmp_schema_property_prop
1198 \cs_new_protected:Npn __pdfmeta_xmp_property_new:nnnnn #1 #2 #3 #4 #5 %
1199 %#1 schema #2 name, #3 type, #4 category #5 description
1200 {
1201 \tl_if_exist:cTF { g__pdfmeta_xmp_schema_#1_properties_tl }
1202 {
1203 \prop_get:NeNF \g__pdfmeta_xmp_schema_property_prop {#1:#2}\l__pdfmeta_tmpa_tl
1204 {
1205 \prop_gput:Nee \g__pdfmeta_xmp_schema_property_prop {#1:#2}{#3}
1206 \tl_gput_right:cn { g__pdfmeta_xmp_schema_#1_properties_tl }
1207 {
1208 __pdfmeta_xmp_add_packet_open:nn {rdf}{li~rdf:parseType="Resource"}
1209 __pdfmeta_xmp_add_packet_line:nnn {pdfaProperty}{name}{#2}
1210 __pdfmeta_xmp_add_packet_line:nnn {pdfaProperty}{valueType}{#3}
1211 __pdfmeta_xmp_add_packet_line:nnn {pdfaProperty}{category}{#4}
1212 __pdfmeta_xmp_add_packet_line:nnn {pdfaProperty}{description}{#5}
1213 __pdfmeta_xmp_add_packet_close:nn{rdf}{li}
1214 }
1215 }
1216 }
1217 {
1218 \msg_warning:nnnn{pdfmeta}{xmp-undefined}{schema}{#1}
1219 }
1220 }

(End of definition for __pdfmeta_xmp_property_new:nnnnn.)

__pdfmeta_xmp_add_packet_field:nnn This adds a field to a schema.

1221 \cs_new_protected:Npn __pdfmeta_xmp_add_packet_field:nnn #1 #2 #3 %
1222 %#1 name #2 valuetype #3 description
1223 {
1224 __pdfmeta_xmp_add_packet_open_attr:nnn {rdf}{li}{rdf:parseType="Resource"}
1225 __pdfmeta_xmp_add_packet_line:nnn {pdfaField}{name}{#1}
1226 __pdfmeta_xmp_add_packet_line:nnn {pdfaField}{valueType}{#2}
1227 __pdfmeta_xmp_add_packet_line:nnn {pdfaField}{description}{#3}
1228 __pdfmeta_xmp_add_packet_close:nn{rdf}{li}
1229 }

(End of definition for __pdfmeta_xmp_add_packet_field:nnn.)

4.7.1 The extension data

The list of extension has been reviewed and compared with the list of namespaces which
can be used in pdf/A-17

[1] https://www.pdfa.org/wp-content/uploads/2011/08/tn0008_predefined_xmp_
properties_in_pdfa-1_2008-03-20.pdf and the content of the namespaces as listed
here [2] https://developer.adobe.com/xmp/docs/XMPNamespaces/pdf/

pdf property: Trapped. We ignore it, it seems to validate without it.
7While A-1 builds on PDF 1.4 and so it probably no longer relevant, it is not quite clear if one can

remove this for A-2 and newer, so we stay on the safe side.

42

https://www.pdfa.org/wp-content/uploads/2011/08/tn0008_predefined_xmp_properties_in_pdfa-1_2008-03-20.pdf
https://www.pdfa.org/wp-content/uploads/2011/08/tn0008_predefined_xmp_properties_in_pdfa-1_2008-03-20.pdf
https://developer.adobe.com/xmp/docs/XMPNamespaces/pdf/

xmpMM properties DocumentID, InstanceID, VersionID, Renditionclass declared by
hyperxmp. Properties InstanceID and OriginalDocumentID declared by pdfx
(pdfx.xmp) With the exception of OriginalDocumentID all are already allowed and
predefined.

1230 __pdfmeta_xmp_schema_new:nnn
1231 {XMP~Media~Management~Schema}
1232 {xmpMM}
1233 {http://ns.adobe.com/xap/1.0/mm/}
1234 __pdfmeta_xmp_property_new:nnnnn
1235 {xmpMM}
1236 {OriginalDocumentID}
1237 {URI}
1238 {internal}
1239 {The~common~identifier~for~all~versions~and~renditions~of~a~document.}

pdfaid properties part and conformance are declared by hyperxmp, but no here as al­
ready in http://www.aiim.org/pdfa/ns/id/. But we declare year so that it can be
used also with older A-standards.

pdfaid~(schema)

1240 __pdfmeta_xmp_schema_new:nnn
1241 {PDF/A~Identification~Schema}
1242 {pdfaid}
1243 {http://www.aiim.org/pdfa/ns/id/}
1244 __pdfmeta_xmp_property_new:nnnnn
1245 {pdfaid}
1246 {year}
1247 {Integer}
1248 {internal}
1249 {Year~of~standard}
1250 __pdfmeta_xmp_property_new:nnnnn
1251 {pdfaid}
1252 {rev}
1253 {Integer}
1254 {internal}
1255 {Revision~year~of~standard}

(End of definition for pdfaid~(schema).)

pdfuaid here we need (?) to declare the property “ part” and “ rev”.

pdfuaid~(schema)

1256 __pdfmeta_xmp_schema_new:nnn
1257 {PDF/UA~Universal~Accessibility~Schema}
1258 {pdfuaid}
1259 {http://www.aiim.org/pdfua/ns/id/}
1260 __pdfmeta_xmp_property_new:nnnnn
1261 {pdfuaid}
1262 {part}
1263 {Integer}

43

1264 {internal}
1265 {Part~of~ISO~14289~standard}
1266 __pdfmeta_xmp_property_new:nnnnn
1267 {pdfuaid}
1268 {rev}
1269 {Integer}
1270 {internal}
1271 {Revision~of~ISO~14289~standard}

(End of definition for pdfuaid~(schema).)

pdfx According to [1] not an allowed schema, but it seems to validate and allow to
set the pdf/X version, hyperxmp declares here the properties GTS_PDFXVersion
and GTS_PDFXConformance. Ignored as only relevant for older pdf/X version not
supported by the pdfmanagement.

pdfxid we set this so that we can add the pdf/X version for pdf/X-4 and higher. This
is only set if a pdf/X standard is used, see issue #50

pdfxid~(schema)

1272 \cs_new_protected:Npn __pdfmeta_xmp_add_pdfxid:
1273 {
1274 __pdfmeta_xmp_xmlns_new:nn {pdfxid} {http://www.npes.org/pdfx/ns/id/}
1275 __pdfmeta_xmp_schema_new:nnn
1276 {PDF/X~ID~Schema}
1277 {pdfxid}
1278 {http://www.npes.org/pdfx/ns/id/}
1279 __pdfmeta_xmp_property_new:nnnnn
1280 {pdfxid}
1281 {GTS_PDFXVersion}
1282 {Text}
1283 {internal}
1284 {ID~of~PDF/X~standard}
1285 }

(End of definition for pdfxid~(schema).)

Prismprism~(schema)

1286 __pdfmeta_xmp_schema_new:nnn
1287 {PRISM~Basic~Metadata}
1288 {prism}
1289 {http://prismstandard.org/namespaces/basic/3.0/}
1290 __pdfmeta_xmp_property_new:nnnnn
1291 {prism}
1292 {complianceProfile}
1293 {Text}
1294 {internal}
1295 {PRISM~specification~compliance~profile~to~which~this~document~adheres}
1296 __pdfmeta_xmp_property_new:nnnnn
1297 {prism}
1298 {publicationName}
1299 {Text}

44

1300 {external}
1301 {Publication~name}
1302 __pdfmeta_xmp_property_new:nnnnn
1303 {prism}
1304 {aggregationType}
1305 {Text}
1306 {external}
1307 {Publication~type}
1308 __pdfmeta_xmp_property_new:nnnnn
1309 {prism}
1310 {bookEdition}
1311 {Text}
1312 {external}
1313 {Edition~of~the~book~in~which~the~document~was~published}
1314 __pdfmeta_xmp_property_new:nnnnn
1315 {prism}
1316 {volume}
1317 {Text}
1318 {external}
1319 {Publication~volume~number}
1320 __pdfmeta_xmp_property_new:nnnnn
1321 {prism}
1322 {number}
1323 {Text}
1324 {external}
1325 {Publication~issue~number~within~a~volume}
1326 __pdfmeta_xmp_property_new:nnnnn
1327 {prism}
1328 {pageRange}
1329 {Text}
1330 {external}
1331 {Page~range~for~the~document~within~the~print~version~of~its~publication}
1332 __pdfmeta_xmp_property_new:nnnnn
1333 {prism}
1334 {issn}
1335 {Text}
1336 {external}
1337 {ISSN~for~the~printed~publication~in~which~the~document~was~published}
1338 __pdfmeta_xmp_property_new:nnnnn
1339 {prism}
1340 {eIssn}
1341 {Text}
1342 {external}
1343 {ISSN~for~the~electronic~publication~in~which~the~document~was~published}
1344 __pdfmeta_xmp_property_new:nnnnn
1345 {prism}
1346 {isbn}
1347 {Text}
1348 {external}
1349 {ISBN~for~the~publication~in~which~the~document~was~published}
1350 __pdfmeta_xmp_property_new:nnnnn
1351 {prism}
1352 {doi}
1353 {Text}

45

1354 {external}
1355 {Digital~Object~Identifier~for~the~document}
1356 __pdfmeta_xmp_property_new:nnnnn
1357 {prism}
1358 {url}
1359 {URL}
1360 {external}
1361 {URL~at~which~the~document~can~be~found}
1362 __pdfmeta_xmp_property_new:nnnnn
1363 {prism}
1364 {byteCount}
1365 {Integer}
1366 {internal}
1367 {Approximate~file~size~in~octets}
1368 __pdfmeta_xmp_property_new:nnnnn
1369 {prism}
1370 {pageCount}
1371 {Integer}
1372 {internal}
1373 {Number~of~pages~in~the~print~version~of~the~document}
1374 __pdfmeta_xmp_property_new:nnnnn
1375 {prism}
1376 {subtitle}
1377 {Text}
1378 {external}
1379 {Document's~subtitle}

(End of definition for prism~(schema).)

iptciptc (schema)

1380 __pdfmeta_xmp_schema_new:nnn
1381 {IPTC~Core~Schema}
1382 {Iptc4xmpCore}
1383 {http://iptc.org/std/Iptc4xmpCore/1.0/xmlns/}
1384 __pdfmeta_xmp_property_new:nnnnn
1385 {Iptc4xmpCore}
1386 {CreatorContactInfo}
1387 {ContactInfo}
1388 {external}
1389 {Document~creator's~contact~information}
1390 \cs_new_protected:cpn { __pdfmeta_xmp_schema_Iptc4xmpCore_additions: }
1391 {
1392 __pdfmeta_xmp_add_packet_open:nn{pdfaSchema}{valueType}
1393 __pdfmeta_xmp_add_packet_open:nn{rdf}{Seq}
1394 __pdfmeta_xmp_add_packet_open_attr:nnn{rdf}{li}{rdf:parseType="Resource"}
1395 __pdfmeta_xmp_add_packet_line:nnn{pdfaType}{type}{ContactInfo}
1396 __pdfmeta_xmp_add_packet_line:nnn{pdfaType}{namespaceURI}
1397 {http://iptc.org/std/Iptc4xmpCore/1.0/xmlns/}
1398 __pdfmeta_xmp_add_packet_line:nnn{pdfaType}{prefix}{Iptc4xmpCore}
1399 __pdfmeta_xmp_add_packet_line:nnn{pdfaType}{description}
1400 {Basic~set~of~information~to~get~in~contact~with~a~person}
1401 __pdfmeta_xmp_add_packet_open:nn{pdfaType}{field}
1402 __pdfmeta_xmp_add_packet_open:nn{rdf}{Seq}
1403 __pdfmeta_xmp_add_packet_field:nnn{CiAdrCity}{Text}

46

1404 {Contact~information~city}
1405 __pdfmeta_xmp_add_packet_field:nnn{CiAdrCtry}{Text}
1406 {Contact~information~country}
1407 __pdfmeta_xmp_add_packet_field:nnn{CiAdrExtadr}{Text}
1408 {Contact~information~address}
1409 __pdfmeta_xmp_add_packet_field:nnn{CiAdrPcode}{Text}
1410 {Contact~information~local~postal~code}
1411 __pdfmeta_xmp_add_packet_field:nnn{CiAdrRegion}{Text}
1412 {Contact~information~regional~information~such~as~state~or~province}
1413 __pdfmeta_xmp_add_packet_field:nnn{CiEmailWork}{Text}
1414 {Contact~information~email~address(es)}
1415 __pdfmeta_xmp_add_packet_field:nnn{CiTelWork}{Text}
1416 {Contact~information~telephone~number(s)}
1417 __pdfmeta_xmp_add_packet_field:nnn{CiUrlWork}{Text}
1418 {Contact~information~Web~URL(s)}
1419 __pdfmeta_xmp_add_packet_close:nn{rdf}{Seq}
1420 __pdfmeta_xmp_add_packet_close:nn{pdfaType}{field}
1421 __pdfmeta_xmp_add_packet_close:nn{rdf}{li}
1422 __pdfmeta_xmp_add_packet_close:nn{rdf}{Seq}
1423 __pdfmeta_xmp_add_packet_close:nn{pdfaSchema}{valueType}
1424 }

(End of definition for iptc (schema).)

jav : currently ignored

tdmtdmrep (schema)

1425 __pdfmeta_xmp_schema_new:nnn
1426 {TDMRep}
1427 {tdm}
1428 {http://www.w3.org/ns/tdmrep/}
1429 __pdfmeta_xmp_property_new:nnnnn
1430 {tdm}
1431 {reservation}
1432 {Closed~Choice~of~Integer}
1433 {internal}
1434 {TDM~rights~are~reserved~(1)~or~not~reserved~(0)}
1435 __pdfmeta_xmp_property_new:nnnnn
1436 {tdm}
1437 {policy}
1438 {URI}
1439 {internal}
1440 {URL~pointing~to~a~TDM~Policy~set~by~the~rightsholder}

(End of definition for tdmrep (schema).)

declarations The PDF Declarations mechanism allows creation and editing software to
declare, via a PDF Declaration, a PDF file to be in conformance with a 3rd party
specification or profile that may not be related to PDF technology. Their specifica­
tion is for example described in https://pdfa.org/wp-content/uploads/2019/
09/PDF-Declarations.pdf.
If declarations are added to the XMP-metadata they need (for pdf/A compliance)
a schema declaration. We do not add it by default but define here a command to

47

https://pdfa.org/wp-content/uploads/2019/09/PDF-Declarations.pdf
https://pdfa.org/wp-content/uploads/2019/09/PDF-Declarations.pdf

enable it. (This can be done in the document preamble as xmp is built only at the
end.)

1441 \cs_new_protected:Npn __pdfmeta_xmp_schema_enable_pdfd:
1442 {
1443 __pdfmeta_xmp_xmlns_new:nn {pdfd}{http://pdfa.org/declarations/}
1444 __pdfmeta_xmp_schema_new:nnn
1445 {PDF~Declarations~Schema}
1446 {pdfd}
1447 {http://pdfa.org/declarations/}
1448 __pdfmeta_xmp_property_new:nnnnn
1449 {pdfd}
1450 {declarations}
1451 {Bag~declaration}
1452 {external}
1453 {An~unordered~array~of~PDF~Declaration~entries,~where~each~PDF~Declaration~representing~a~statement~of~conformance~with~ an~identified~external~standard~or~profile,~along~with~optional~information~identifying~the~nature~of~the~claim.}

the values are complicated so we use the additions: method to add them.

1454 \cs_new_protected:cpn { __pdfmeta_xmp_schema_pdfd_additions: }
1455 {
1456 __pdfmeta_xmp_add_packet_open:nn{pdfaSchema}{valueType}
1457 __pdfmeta_xmp_add_packet_open:nn{rdf}{Seq}
1458 __pdfmeta_xmp_add_packet_open_attr:nnn{rdf}{li}{rdf:parseType="Resource"}
1459 __pdfmeta_xmp_add_packet_line:nnn{pdfaType}{type}{claim}
1460 __pdfmeta_xmp_add_packet_line:nnn{pdfaType}{namespaceURI}
1461 {http://pdfa.org/declarations/}
1462 __pdfmeta_xmp_add_packet_line:nnn{pdfaType}{prefix}{pdfd}
1463 __pdfmeta_xmp_add_packet_line:nnn{pdfaType}{description}
1464 {A~structure~describing~properties~of~an~individual claim.}
1465 __pdfmeta_xmp_add_packet_open:nn{pdfaType}{field}
1466 __pdfmeta_xmp_add_packet_open:nn{rdf}{Seq}
1467 __pdfmeta_xmp_add_packet_field:nnn{claimReport}{Text}
1468 {A~URL~to~a~report~containing~details~of~the~specific~conformance~claim.}
1469 __pdfmeta_xmp_add_packet_field:nnn{claimCredentials}{Text}
1470 {The~claimant's~credentials.}
1471 __pdfmeta_xmp_add_packet_field:nnn{claimDate}{Text}
1472 {A~date~identifying~when~the~claim~was~made.}
1473 __pdfmeta_xmp_add_packet_field:nnn{claimBy}{Text}
1474 {The~name~of~the~organization~and/or~individual~and/or~software~making~the~claim.}
1475 __pdfmeta_xmp_add_packet_close:nn{rdf}{Seq}
1476 __pdfmeta_xmp_add_packet_close:nn{pdfaType}{field}
1477 __pdfmeta_xmp_add_packet_close:nn{rdf}{li}
1478 __pdfmeta_xmp_add_packet_open_attr:nnn{rdf}{li}{rdf:parseType="Resource"}
1479 __pdfmeta_xmp_add_packet_line:nnn{pdfaType}{type}{declaration}
1480 __pdfmeta_xmp_add_packet_line:nnn{pdfaType}{namespaceURI}
1481 {http://pdfa.org/declarations/}
1482 __pdfmeta_xmp_add_packet_line:nnn{pdfaType}{prefix}{pdfd}
1483 __pdfmeta_xmp_add_packet_line:nnn{pdfaType}{description}
1484 {A~structure~describing~a~single~PDF~ Declaration~asserting~conformance~with~ an~externally-

identified~standard~or~ profile.}
1485 __pdfmeta_xmp_add_packet_open:nn{pdfaType}{field}
1486 __pdfmeta_xmp_add_packet_open:nn{rdf}{Seq}
1487 __pdfmeta_xmp_add_packet_field:nnn{conformsTo}{Text}

48

1488 {A~property~containing~a~URI~specifying~the~standard~or~profile~by~the~PDF~Declaration.~This~property~is~ intended~to~mirror~the~Dublin~Core~property~dc:conformsTo.}
1489 __pdfmeta_xmp_add_packet_field:nnn{claimData}{Bag~claim}
1490 {An~unordered~array~of~claim~data,~where~each~claim~identifies~the~nature~of~the~claim.}
1491 __pdfmeta_xmp_add_packet_close:nn{rdf}{Seq}
1492 __pdfmeta_xmp_add_packet_close:nn{pdfaType}{field}
1493 __pdfmeta_xmp_add_packet_close:nn{rdf}{li}
1494 __pdfmeta_xmp_add_packet_close:nn{rdf}{Seq}
1495 __pdfmeta_xmp_add_packet_close:nn{pdfaSchema}{valueType}
1496 }

the schema should be added only once so disable it after use:

1497 \cs_gset_eq:NN __pdfmeta_xmp_schema_enable_pdfd: \prg_do_nothing:
1498 }

4.8 The actual user / document data
4.8.1 pdf

This builds pdf related the data with the (prefix “ pdf”).

__pdfmeta_xmp_build_pdf:
Producer/pdfproducer

PDFversion1499 \cs_new_protected:Npn __pdfmeta_xmp_build_pdf:
1500 {

At first the producer. If not given manually we build it from the exec string plus the
version number

1501 __pdfmeta_xmp_add_packet_line_default:nnee
1502 {pdf}{Producer}
1503 {\c_sys_engine_exec_str-\c_sys_engine_version_str}
1504 {\GetDocumentProperties{hyperref/pdfproducer}}

Now the PDF version

1505 __pdfmeta_xmp_add_packet_line:nne{pdf}{PDFVersion}{\pdf_version:}

1506 }

(End of definition for __pdfmeta_xmp_build_pdf: , Producer/pdfproducer , and PDFversion.)

4.8.2 xmp

This builds the data with the (prefix “ xmp”).

__pdfmeta_xmp_build_xmp:
CreatorTool/pdfcreator

BaseUrl/baseurl1507 \cs_new_protected:Npn __pdfmeta_xmp_build_xmp:
1508 {

The creator

49

1509 __pdfmeta_xmp_add_packet_line_default:nnee
1510 {xmp}{CreatorTool}
1511 {LaTeX}
1512 { \GetDocumentProperties{hyperref/pdfcreator} }

The baseurl

1513 __pdfmeta_xmp_add_packet_line_default:nnee
1514 {xmp}{BaseURL}{}
1515 { \GetDocumentProperties{hyperref/baseurl} }

CreationDate

1516 __pdfmeta_xmp_date_get:nNN
1517 {document/creationdate}\l__pdfmeta_tmpa_tl\l__pdfmeta_tmpa_seq
1518 __pdfmeta_xmp_add_packet_line:nne{xmp}{CreateDate}{__pdfmeta_xmp_print_date:N\l__pdfmeta_tmpa_seq}
1519 \pdfmanagement_add:nne{Info}{CreationDate}{(\l__pdfmeta_tmpa_tl)}

ModifyDate

1520 __pdfmeta_xmp_date_get:nNN
1521 {document/moddate}\l__pdfmeta_tmpa_tl\l__pdfmeta_tmpa_seq
1522 __pdfmeta_xmp_add_packet_line:nne{xmp}{ModifyDate}{__pdfmeta_xmp_print_date:N\l__pdfmeta_tmpa_seq}
1523 \pdfmanagement_add:nne{Info}{ModDate}{(\l__pdfmeta_tmpa_tl)}

MetadataDate

1524 __pdfmeta_xmp_date_get:nNN
1525 {hyperref/pdfmetadate}\l__pdfmeta_tmpa_tl\l__pdfmeta_tmpa_seq
1526 __pdfmeta_xmp_add_packet_line:nne{xmp}{MetadataDate}{__pdfmeta_xmp_print_date:N\l__pdfmeta_tmpa_seq}

1527 }

(End of definition for __pdfmeta_xmp_build_xmp: , CreatorTool/pdfcreator , and BaseUrl/baseurl.)

4.8.3 Standards

The metadata for standards are taken from the pdfstandard key of the document/metadata
family. The values for A-standards are taken from the property, X and UA are currently
taken from the document container, this should be changed when merging of standards
are possible.

__pdfmeta_xmp_build_standards:

1528 \cs_new_protected:Npn __pdfmeta_xmp_build_standards:
1529 {
1530 __pdfmeta_xmp_add_packet_line:nne {pdfaid}{part}{\pdfmeta_standard_item:n{level}}
1531 __pdfmeta_xmp_add_packet_line:nne
1532 {pdfaid}{conformance}{\pdfmeta_standard_item:n{conformance}}
1533 \int_compare:nNnTF {0\pdfmeta_standard_item:n{level}}<{4}
1534 {__pdfmeta_xmp_add_packet_line:nne {pdfaid}{year} {\pdfmeta_standard_item:n{year}}}
1535 {__pdfmeta_xmp_add_packet_line:nne {pdfaid}{rev} {\pdfmeta_standard_item:n{year}}}
1536 __pdfmeta_xmp_add_packet_line:nne

50

1537 {pdfxid}{GTS_PDFXVersion}{\GetDocumentProperties{document/pdfstandard-X}}
1538 \pdfmanagement_get_documentproperties:nNT {document/pdfstandard-UA}\l__pdfmeta_tmpa_tl
1539 {
1540 __pdfmeta_xmp_add_packet_line:nne
1541 {pdfuaid}{part}{\exp_last_unbraced:No\use_i:nn \l__pdfmeta_tmpa_tl}
1542 __pdfmeta_xmp_add_packet_line:nne
1543 {pdfuaid}{rev}{\exp_last_unbraced:No\use_ii:nn \l__pdfmeta_tmpa_tl}
1544 }
1545 }

(End of definition for __pdfmeta_xmp_build_standards:.)

4.9 Declarations
See https://pdfa.org/wp-content/uploads/2019/09/PDF-Declarations.pdf

\g__pdfmeta_xmp_pdfd_data_prop This holds the data for declarations.

1546 \prop_new:N \g__pdfmeta_xmp_pdfd_data_prop

(End of definition for \g__pdfmeta_xmp_pdfd_data_prop.)

the main building command used in the xmp generation

__pdfmeta_xmp_build_pdfd:

1547 \cs_new_protected:Npn __pdfmeta_xmp_build_pdfd:
1548 {
1549 \prop_if_empty:NF\g__pdfmeta_xmp_pdfd_data_prop
1550 {
1551 __pdfmeta_xmp_add_packet_open:nn{pdfd}{declarations}
1552 __pdfmeta_xmp_add_packet_open:nn{rdf}{Bag}
1553 \prop_map_inline:Nn \g__pdfmeta_xmp_pdfd_data_prop
1554 {
1555 __pdfmeta_xmp_build_pdfd_claim:nn{##1}{##2}
1556 }
1557 __pdfmeta_xmp_add_packet_close:nn{rdf}{Bag}
1558 __pdfmeta_xmp_add_packet_close:nn{pdfd}{declarations}
1559 }
1560 }

(End of definition for __pdfmeta_xmp_build_pdfd:.)

__pdfmeta_xmp_build_pdfd_claim:nn This build the xml for one claim. If there is no claimData only the conformsTo is output.

1561 \cs_new_protected:Npn __pdfmeta_xmp_build_pdfd_claim:nn #1#2
1562 {
1563 __pdfmeta_xmp_add_packet_open_attr:nnn{rdf}{li}{rdf:parseType="Resource"}
1564 __pdfmeta_xmp_add_packet_line:nnn{pdfd}{conformsTo}{#1}
1565 \tl_if_empty:nF {#2}
1566 {
1567 __pdfmeta_xmp_add_packet_open:nn{pdfd}{claimData}
1568 __pdfmeta_xmp_add_packet_open:nn{rdf}{Bag}
1569 #2
1570 __pdfmeta_xmp_add_packet_close:nn{rdf}{Bag}

51

https://pdfa.org/wp-content/uploads/2019/09/PDF-Declarations.pdf

1571 __pdfmeta_xmp_add_packet_close:nn{pdfd}{claimData}
1572 }
1573 __pdfmeta_xmp_add_packet_close:nn{rdf}{li}
1574 }

(End of definition for __pdfmeta_xmp_build_pdfd_claim:nn.)

4.10 Photoshop
__pdfmeta_xmp_build_photoshop:

1575 \cs_new_protected:Npn __pdfmeta_xmp_build_photoshop:
1576 {

pdfauthortitle/photoshop:AuthorsPosition

1577 __pdfmeta_xmp_add_packet_line:nne{photoshop}{AuthorsPosition}
1578 { \GetDocumentProperties{hyperref/pdfauthortitle} }

pdfcaptionwriter/photoshop:CaptionWriter

1579 __pdfmeta_xmp_add_packet_line:nne{photoshop}{CaptionWriter}
1580 { \GetDocumentProperties{hyperref/pdfcaptionwriter} }

1581 }

(End of definition for __pdfmeta_xmp_build_photoshop:.)

4.11 XMP Media Management
__pdfmeta_xmp_build_xmpMM:

1582 \cs_new_protected:Npn __pdfmeta_xmp_build_xmpMM:
1583 {

pdfdocumentid / xmpMM:DocumentID

1584 \str_set:Ne\l__pdfmeta_tmpa_str {\GetDocumentProperties{hyperref/pdfdocumentid}}
1585 \str_if_empty:NT \l__pdfmeta_tmpa_str
1586 {
1587 __pdfmeta_xmp_create_uuid:nN
1588 {\jobname\GetDocumentProperties{hyperref/pdftitle}}
1589 \l__pdfmeta_tmpa_str
1590 }
1591 __pdfmeta_xmp_add_packet_line:nnV{xmpMM}{DocumentID}
1592 \l__pdfmeta_tmpa_str

pdfinstanceid / xmpMM:InstanceID

52

1593 \str_set:Ne\l__pdfmeta_tmpa_str {\GetDocumentProperties{hyperref/pdfinstanceid}}
1594 \str_if_empty:NT \l__pdfmeta_tmpa_str
1595 {
1596 __pdfmeta_xmp_create_uuid:nN
1597 {\jobname\l__pdfmeta_xmp_currentdate_tl}
1598 \l__pdfmeta_tmpa_str
1599 }
1600 __pdfmeta_xmp_add_packet_line:nnV{xmpMM}{InstanceID}
1601 \l__pdfmeta_tmpa_str

pdfversionid/xmpMM:VersionID

1602 __pdfmeta_xmp_add_packet_line:nne{xmpMM}{VersionID}
1603 { \GetDocumentProperties{hyperref/pdfversionid} }

pdfrendition/xmpMM:RenditionClass

1604 __pdfmeta_xmp_add_packet_line:nne{xmpMM}{RenditionClass}
1605 { \GetDocumentProperties{hyperref/pdfrendition} }

1606 }

(End of definition for __pdfmeta_xmp_build_xmpMM:.)

4.12 Rest of dublin Core data
__pdfmeta_xmp_build_dc:

dc:creator/pdfauthor
dc:subject/pdfkeywords

dc:type/pdftype
dc:publisher/pdfpublisher
dc:description/pdfsubject
dc:language/lang/pdflang

dc:identifier/pdfidentifier
photoshop:AuthorsPosition/pdfauthortitle
photoshop:CaptionWriter/pdfcaptionwriter

1607 \cs_new_protected:Npn __pdfmeta_xmp_build_dc:
1608 {

pdfauthor/dc:creator

1609 __pdfmeta_xmp_add_packet_list_simple:nnne {dc}{creator}{Seq}
1610 { \GetDocumentProperties{hyperref/pdfauthor} }
1611 \int_compare:nNnT {0\pdfmeta_standard_item:n{level}}={1}
1612 { \pdfmanagement_remove:nn{Info}{Author} }

pdftitle/dc:title. This is rather complex as we want to support a list with different
languages.

1613 __pdfmeta_xmp_add_packet_list:nnne {dc}{title}{Alt}
1614 { \GetDocumentProperties{hyperref/pdftitle} }

pdfkeywords/dc:subject

1615 __pdfmeta_xmp_add_packet_list_simple:nnne {dc}{subject}{Bag}
1616 { \GetDocumentProperties{hyperref/pdfkeywords} }
1617 \int_compare:nNnT {0\pdfmeta_standard_item:n{level}}={1}
1618 { \pdfmanagement_remove:nn{Info}{Keywords} }

pdftype/dc:type

53

1619 \pdfmanagement_get_documentproperties:nNTF { hyperref/pdftype } \l__pdfmeta_tmpa_tl
1620 {
1621 __pdfmeta_xmp_add_packet_list_simple:nnnV {dc}{type}{Bag}\l__pdfmeta_tmpa_tl
1622 }
1623 {
1624 __pdfmeta_xmp_add_packet_list_simple:nnnn {dc}{type}{Bag}{Text}
1625 }

pdfpublisher/dc:publisher

1626 __pdfmeta_xmp_add_packet_list_simple:nnne {dc}{publisher}{Bag}
1627 { \GetDocumentProperties{hyperref/pdfpublisher} }

pdfsubject/dc:description

1628 __pdfmeta_xmp_add_packet_list:nnne
1629 {dc}{description}{Alt}
1630 {\GetDocumentProperties{hyperref/pdfsubject}}

lang/pdflang/dc:language

1631 __pdfmeta_xmp_add_packet_list_simple:nnnV
1632 {dc}{language}{Bag}\l__pdfmeta_xmp_doclang_tl

pdfidentifier/dc:identifier

1633 __pdfmeta_xmp_add_packet_line:nne{dc}{identifier}
1634 { \GetDocumentProperties{hyperref/pdfidentifier} }

pdfdate/dc:date

1635 __pdfmeta_xmp_date_get:nNN {hyperref/pdfdate}\l__pdfmeta_tmpa_tl\l__pdfmeta_tmpa_seq
1636 __pdfmeta_xmp_add_packet_list_simple:nnne
1637 {dc}{date}{Seq}{__pdfmeta_xmp_print_date:N\l__pdfmeta_tmpa_seq}

The file format

1638 __pdfmeta_xmp_add_packet_line:nnn{dc}{format}{application/pdf}

The source

1639 __pdfmeta_xmp_add_packet_line_default:nnee
1640 {dc}{source}
1641 { \c_sys_jobname_str.tex }
1642 { \GetDocumentProperties{hyperref/pdfsource} }

1643 __pdfmeta_xmp_add_packet_list:nnne{dc}{rights}{Alt}
1644 {\GetDocumentProperties{hyperref/pdfcopyright}}

1645 }

(End of definition for __pdfmeta_xmp_build_dc: and others.)

54

4.13 xmpRights
__pdfmeta_xmp_build_xmpRights:

1646 \cs_new_protected:Npn __pdfmeta_xmp_build_xmpRights:
1647 {
1648 __pdfmeta_xmp_add_packet_line:nne
1649 {xmpRights}
1650 {WebStatement}
1651 {\GetDocumentProperties{hyperref/pdflicenseurl}}
1652 __pdfmeta_xmp_add_packet_line:nne
1653 {xmpRights}
1654 {Marked}
1655 {
1656 \str_case:en {\GetDocumentProperties{document/copyright}}
1657 {
1658 {true}{True}
1659 {false}{False}
1660 }
1661 }
1662 }

(End of definition for __pdfmeta_xmp_build_xmpRights:.)

4.14 IPTC
We want the block and also the resources only if they are actually used. So we pack them
first in a local variable

\l__pdfmeta_xmp_iptc_data_tl

1663 \tl_new:N\l__pdfmeta_xmp_iptc_data_tl

(End of definition for \l__pdfmeta_xmp_iptc_data_tl.)

__pdfmeta_xmp_build_iptc_data:N

1664 \cs_new_protected:Npn __pdfmeta_xmp_build_iptc_data:N #1
1665 {
1666 \tl_clear:N #1
1667 __pdfmeta_xmp_incr_indent:__pdfmeta_xmp_incr_indent:__pdfmeta_xmp_incr_indent:__pdfmeta_xmp_incr_indent:
1668 __pdfmeta_xmp_add_packet_line:nneN
1669 {Iptc4xmpCore}{CiAdrExtadr}
1670 {\GetDocumentProperties{hyperref/pdfcontactaddress}}
1671 #1
1672 __pdfmeta_xmp_add_packet_line:nneN
1673 {Iptc4xmpCore}{CiAdrCity}
1674 {\GetDocumentProperties{hyperref/pdfcontactcity}}
1675 #1
1676 __pdfmeta_xmp_add_packet_line:nneN
1677 {Iptc4xmpCore}{CiAdrPcode}
1678 {\GetDocumentProperties{hyperref/pdfcontactpostcode}}
1679 #1
1680 __pdfmeta_xmp_add_packet_line:nneN
1681 {Iptc4xmpCore}{CiAdrCtry}

55

1682 {\GetDocumentProperties{hyperref/pdfcontactcountry}}
1683 #1
1684 __pdfmeta_xmp_add_packet_line:nneN
1685 {Iptc4xmpCore}{CiTelWork}
1686 {\GetDocumentProperties{hyperref/pdfcontactphone}}
1687 #1
1688 __pdfmeta_xmp_add_packet_line:nneN
1689 {Iptc4xmpCore}{CiEmailWork}
1690 {\GetDocumentProperties{hyperref/pdfcontactemail}}
1691 #1
1692 __pdfmeta_xmp_add_packet_line:nneN
1693 {Iptc4xmpCore}{CiUrlWork}
1694 {\GetDocumentProperties{hyperref/pdfcontacturl}}
1695 #1
1696 __pdfmeta_xmp_decr_indent:__pdfmeta_xmp_decr_indent:__pdfmeta_xmp_decr_indent:__pdfmeta_xmp_decr_indent:
1697 }

(End of definition for __pdfmeta_xmp_build_iptc_data:N.)

__pdfmeta_xmp_build_iptc:

1698 \cs_new_protected:Npn __pdfmeta_xmp_build_iptc:
1699 {
1700 \tl_if_empty:NF\l__pdfmeta_xmp_iptc_data_tl
1701 {
1702 __pdfmeta_xmp_add_packet_open_attr:nnn
1703 {Iptc4xmpCore}{CreatorContactInfo}{rdf:parseType="Resource"}
1704 \tl_gput_right:Ne\g__pdfmeta_xmp_packet_tl { \l__pdfmeta_xmp_iptc_data_tl }
1705 __pdfmeta_xmp_add_packet_close:nn
1706 {Iptc4xmpCore}{CreatorContactInfo}
1707 }
1708 }

(End of definition for __pdfmeta_xmp_build_iptc:.)

4.15 Prism
__pdfmeta_xmp_build_prism:

complianceProfile
prism:subtitle/pdfsubtitle1709 \cs_new_protected:Npn __pdfmeta_xmp_build_prism:

1710 {

The compliance profile is a fix value taken from hyperxmp

1711 __pdfmeta_xmp_add_packet_line:nnn
1712 {prism}{complianceProfile}
1713 {three}

the next two values can take an optional language argument. First subtitle

1714 __pdfmeta_xmp_lang_get:eNN
1715 {\GetDocumentProperties{hyperref/pdfsubtitle}}
1716 \l__pdfmeta_tmpa_tl\l__pdfmeta_tmpb_tl
1717 __pdfmeta_xmp_add_packet_line_attr:nneV

56

1718 {prism}{subtitle}
1719 {xml:lang="\l__pdfmeta_tmpa_tl"}
1720 \l__pdfmeta_tmpb_tl

Then publicationName

1721 __pdfmeta_xmp_lang_get:eNN
1722 {\GetDocumentProperties{hyperref/pdfpublication}}
1723 \l__pdfmeta_tmpa_tl\l__pdfmeta_tmpb_tl
1724 __pdfmeta_xmp_add_packet_line_attr:nneV
1725 {prism}{publicationName}
1726 {xml:lang="\l__pdfmeta_tmpa_tl"}
1727 \l__pdfmeta_tmpb_tl

Now the rest

1728 __pdfmeta_xmp_add_packet_line:nne
1729 {prism}{bookEdition}
1730 {\GetDocumentProperties{hyperref/pdfbookedition}}
1731 __pdfmeta_xmp_add_packet_line:nne
1732 {prism}{aggregationType}
1733 {\GetDocumentProperties{hyperref/pdfpubtype}}
1734 __pdfmeta_xmp_add_packet_line:nne
1735 {prism}{volume}
1736 {\GetDocumentProperties{hyperref/pdfvolumenum}}
1737 __pdfmeta_xmp_add_packet_line:nne
1738 {prism}{number}
1739 {\GetDocumentProperties{hyperref/pdfissuenum}}
1740 __pdfmeta_xmp_add_packet_line:nne
1741 {prism}{pageRange}
1742 {\GetDocumentProperties{hyperref/pdfpagerange}}
1743 __pdfmeta_xmp_add_packet_line:nne
1744 {prism}{issn}
1745 {\GetDocumentProperties{hyperref/pdfissn}}
1746 __pdfmeta_xmp_add_packet_line:nne
1747 {prism}{eIssn}
1748 {\GetDocumentProperties{hyperref/pdfeissn}}
1749 __pdfmeta_xmp_add_packet_line:nne
1750 {prism}{doi}
1751 {\GetDocumentProperties{hyperref/pdfdoi}}
1752 __pdfmeta_xmp_add_packet_line:nne
1753 {prism}{url}
1754 {\GetDocumentProperties{hyperref/pdfurl}}

The page count is take from the previous run or from pdfnumpages.

1755 \tl_set:Ne \l__pdfmeta_tmpa_tl { \GetDocumentProperties{hyperref/pdfnumpages} }
1756 __pdfmeta_xmp_add_packet_line:nne
1757 {prism}{pageCount}
1758 {\tl_if_blank:VTF \l__pdfmeta_tmpa_tl {\PreviousTotalPages}{\l__pdfmeta_tmpa_tl}}

1759 }

(End of definition for __pdfmeta_xmp_build_prism: , complianceProfile , and prism:subtitle/pdfsubtitle.)

57

4.16 TDM
__pdfmeta_xmp_build_tdm:

1760 \cs_new_protected:Npn __pdfmeta_xmp_build_tdm:
1761 {

pdftdmreservation/tdm:reservation

1762 __pdfmeta_xmp_add_packet_line:nne{tdm}{reservation}
1763 { \GetDocumentProperties{hyperref/pdftdmreservation} }

pdftdmpolicy/tdm:policy

1764 __pdfmeta_xmp_add_packet_line:nne{tdm}{policy}
1765 { \GetDocumentProperties{hyperref/pdftdmpolicy} }

1766 }

(End of definition for __pdfmeta_xmp_build_tdm:.)

4.17 User additions
\g__pdfmeta_xmp_user_packet_str

1767 \tl_new:N \g__pdfmeta_xmp_user_packet_tl

(End of definition for \g__pdfmeta_xmp_user_packet_str.)

__pdfmeta_xmp_build_user:

1768 \cs_new_protected:Npn __pdfmeta_xmp_build_user:
1769 {
1770 \int_zero:N \l__pdfmeta_xmp_indent_int
1771 \g__pdfmeta_xmp_user_packet_tl
1772 \int_set:Nn \l__pdfmeta_xmp_indent_int {3}
1773 }

(End of definition for __pdfmeta_xmp_build_user:.)

4.18 Activating the metadata
We don’t try to get the byte count. So we can put everything in the shipout/lastpage
hook

1774 \hook_new:n { pdfmeta/xmp }
1775 \AddToHook{shipout/lastpage}
1776 {
1777 \bool_if:NT\g__pdfmeta_xmp_bool
1778 {
1779 \str_if_exist:NTF\c_sys_timestamp_str
1780 {
1781 \tl_set_eq:NN \l__pdfmeta_xmp_currentdate_tl \c_sys_timestamp_str
1782 }

58

1783 {
1784 \file_get_timestamp:nN{\jobname.log}\l__pdfmeta_xmp_currentdate_tl
1785 }
1786 __pdfmeta_xmp_date_split:VN\l__pdfmeta_xmp_currentdate_tl\l__pdfmeta_xmp_currentdate_seq
1787 \hook_use:n { pdfmeta/xmp }
1788 __pdfmeta_xmp_build_packet:
1789 \pdf_object_new:n {__pdfmeta/xmp}
1790 \exp_args:No
1791 __pdf_backend_metadata_stream:n {\g__pdfmeta_xmp_packet_tl}
1792 \pdfmanagement_add:nne {Catalog} {Metadata}{\pdf_object_ref:n{__pdfmeta/xmp}}
1793 \bool_if:NT \g__pdfmeta_xmp_export_bool
1794 {
1795 \iow_open:Nn\g_tmpa_iow{\g__pdfmeta_xmp_export_str.xmpi}
1796 \exp_args:NNo\iow_now:Nn\g_tmpa_iow{\g__pdfmeta_xmp_packet_tl}
1797 \iow_close:N\g_tmpa_iow
1798 }
1799 }
1800 }

4.19 User commands
\pdfmeta_xmp_add:n

1801 \cs_new_protected:Npn \pdfmeta_xmp_add:n #1
1802 {
1803 \tl_gput_right:Nn \g__pdfmeta_xmp_user_packet_tl
1804 {
1805 __pdfmeta_xmp_add_packet_chunk:n { #1 }
1806 }
1807 }

(End of definition for \pdfmeta_xmp_add:n. This function is documented on page 10.)

\pdfmeta_xmp_xmlns_new:nn

1808 \cs_new_protected:Npn \pdfmeta_xmp_xmlns_new:nn #1 #2
1809 {
1810 \prop_if_in:NnTF \g__pdfmeta_xmp_xmlns_prop {#1}
1811 {\msg_warning:nnnn{pdfmeta}{xmp-defined}{xmlns~namespace}{#1}}
1812 {__pdfmeta_xmp_xmlns_new:nn {#1}{#2}}
1813 }

(End of definition for \pdfmeta_xmp_xmlns_new:nn. This function is documented on page 10.)

\pdfmeta_xmp_schema_new:nnn

1814 \cs_set_eq:NN \pdfmeta_xmp_schema_new:nnn __pdfmeta_xmp_schema_new:nnn

(End of definition for \pdfmeta_xmp_schema_new:nnn. This function is documented on page 11.)

\pdfmeta_xmp_property_new:nnnnn

1815 \cs_set_eq:NN \pdfmeta_xmp_property_new:nnnnn __pdfmeta_xmp_property_new:nnnnn

(End of definition for \pdfmeta_xmp_property_new:nnnnn. This function is documented on page 11.)

59

\pdfmeta_xmp_add_declaration:n
\pdfmeta_xmp_add_declaration:e

1816 \cs_new_protected:Npn \pdfmeta_xmp_add_declaration:n #1 %conformsTo uri
1817 {
1818 __pdfmeta_xmp_schema_enable_pdfd:
1819 \prop_gput:Nnn\g__pdfmeta_xmp_pdfd_data_prop{#1}{}
1820 }
1821 \cs_generate_variant:Nn \pdfmeta_xmp_add_declaration:n {e}

(End of definition for \pdfmeta_xmp_add_declaration:n. This function is documented on page 10.)

\pdfmeta_xmp_add_declaration:nnnnn
\pdfmeta_xmp_add_declaration:ennnn

1822 \cs_new_protected:Npn \pdfmeta_xmp_add_declaration:nnnnn #1#2#3#4#5
1823 %#1=conformsTo uri, #2 claimBy, #3 claimDate #4 claimCredentials #4 claimReport
1824 {
1825 __pdfmeta_xmp_schema_enable_pdfd:
1826 \tl_set:Nn \l__pdfmeta_tmpa_tl
1827 {
1828 __pdfmeta_xmp_add_packet_open_attr:nnn{rdf}{li}{rdf:parseType="Resource"}
1829 __pdfmeta_xmp_add_packet_line:nnn{pdfd}{claimBy}{#2}
1830 __pdfmeta_xmp_add_packet_line:nnn{pdfd}{claimDate}{#3}
1831 __pdfmeta_xmp_add_packet_line:nnn{pdfd}{claimCredentials}{#4}
1832 __pdfmeta_xmp_add_packet_line:nnn{pdfd}{claimReport}{#5}
1833 __pdfmeta_xmp_add_packet_close:nn{rdf}{li}
1834 }
1835 \prop_get:NnNT \g__pdfmeta_xmp_pdfd_data_prop {#1}\l__pdfmeta_tmpb_tl
1836 {
1837 \tl_concat:NNN \l__pdfmeta_tmpa_tl \l__pdfmeta_tmpa_tl \l__pdfmeta_tmpb_tl
1838 }
1839 \prop_gput:Nno\g__pdfmeta_xmp_pdfd_data_prop{#1}
1840 {
1841 \l__pdfmeta_tmpa_tl
1842 }
1843 }
1844 \cs_generate_variant:Nn\pdfmeta_xmp_add_declaration:nnnnn {e,eee}

(End of definition for \pdfmeta_xmp_add_declaration:nnnnn. This function is documented on page 10.)

4.20 Default declarations
The two declarations will be required quite often with ua-2, so we provide some interface.

__pdfmeta_xmp_wtpdf_reuse_declaration:
__pdfmeta_xmp_wtpdf_accessibility_declaration:

1845 \cs_new:Npn __pdfmeta_xmp_iso_today:
1846 {
1847 \int_use:N\c_sys_year_int-
1848 \int_compare:nNnT {\c_sys_month_int} < {10}{0} \int_use:N\c_sys_month_int -
1849 \int_compare:nNnT {\c_sys_day_int} < {10}{0} \int_use:N\c_sys_day_int
1850 }
1851 \cs_new_protected:Npn __pdfmeta_xmp_wtpdf_reuse_declaration:
1852 {
1853 \pdfmeta_xmp_add_declaration:eeenn

60

1854 {http://pdfa.org/declarations/wtpdf\c_hash_str reuse1.0}
1855 {LaTeX~Project}
1856 {__pdfmeta_xmp_iso_today:}{}{}
1857 }
1858 \cs_new_protected:Npn __pdfmeta_xmp_wtpdf_accessibility_declaration:
1859 {
1860 \pdfmeta_xmp_add_declaration:ennnn
1861 {http://pdfa.org/declarations/wtpdf\c_hash_str accessibility1.0}
1862 {LaTeX~Project}
1863 {__pdfmeta_xmp_iso_today:}{}{}
1864 }

(End of definition for __pdfmeta_xmp_wtpdf_reuse_declaration: and __pdfmeta_xmp_wtpdf_­
accessibility_declaration:.)

1865 ⟨/package⟩

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
\& . 929
\' . 864
\+ . 864
\- . 864, 945
\[. 945
\\ . 11, 12, 16
\] . 945

A
\A . 945
\AddToDocumentProperties

. 681, 688, 695, 704, 710,
716, 722, 728, 734, 740, 746, 753, 763

\AddToHook 390, 412, 567, 754, 764, 766, 1775

B
BaseUrl/baseurl 1507
bitset commands:
 \bitset_set_false:Nn . . . 117, 118, 119
 \bitset_set_true:Nn 116
 \bitset_to_arabic:N

. 120, 121, 122, 123, 124
bool commands:
 \bool_gset_false:N 774, 813
 \bool_gset_true:N . 622, 773, 808, 817
 \bool_if:NTF 1777, 1793
 \bool_lazy_or:nnTF 416, 825
 \bool_new:N 621, 796

C
char commands:
 \char_generate:nn . 830, 835, 836, 837
clist commands:
 \clist_if_empty:nTF 1042, 1059
 \clist_map_inline:nn

. 551, 650, 1046, 1063, 1074
complianceProfile 1709
CreatorTool/pdfcreator 1507
cs commands:
 \cs_generate_variant:Nn

. 628, 869, 941,
960, 969, 977, 983, 990, 1005, 1015,
1025, 1038, 1055, 1087, 1821, 1844

 \cs_gset_eq:NN 1497
 \cs_if_exist:NTF 64
 \cs_if_exist_use:N 1192
 \cs_new:Npn

. . . . 42, 829, 833, 841, 847, 870, 1845
 \cs_new_protected:Nn 629
 \cs_new_protected:Npn 29,

46, 81, 89, 96, 102, 108, 114, 529,
544, 619, 648, 853, 858, 865, 900,
913, 925, 946, 962, 970, 978, 984,
991, 996, 1006, 1016, 1026, 1039,
1056, 1088, 1138, 1170, 1198, 1221,
1272, 1390, 1441, 1454, 1499, 1507,
1528, 1547, 1561, 1575, 1582, 1607,
1646, 1664, 1698, 1709, 1760, 1768,
1801, 1808, 1816, 1822, 1851, 1858

61

 \cs_set_eq:NN 787, 793, 1093, 1814, 1815

D
\d . 864
dc commands:
 dc:description/pdfsubject 1607
 dc:identifier/pdfidentifier . . . 1607
 dc:language/lang/pdflang 1607
 dc:Nreator/pdfauthor 1607
 dc:publisher/pdfpublisher 1607
 dc:subject/pdfkeywords 1607
 dc:type/pdftype 1607
\DocumentMetadata 3, 4

E
exp commands:
 \exp_args:NNe 587, 592, 598
 \exp_args:Nne 406
 \exp_args:Nnne 66
 \exp_args:NNo 504, 1796
 \exp_args:No 1790
 \exp_args:NV 605, 608
 \exp_last_unbraced:No 1541, 1543
 \exp_not:n 966, 974, 1143

F
file commands:
 \file_get_timestamp:nN 1784

G
\GetDocumentProperties 903, 1090, 1091,

1504, 1512, 1515, 1537, 1578, 1580,
1584, 1588, 1593, 1603, 1605, 1610,
1614, 1616, 1627, 1630, 1634, 1642,
1644, 1651, 1656, 1670, 1674, 1678,
1682, 1686, 1690, 1694, 1715, 1722,
1730, 1733, 1736, 1739, 1742, 1745,
1748, 1751, 1754, 1755, 1763, 1765

group commands:
 \group_begin: 398, 546, 928
 \group_end: 407, 565, 937

H
hook commands:
 \hook_gput_code:nnn 126, 623
 \hook_new:n 1774
 \hook_use:n 1787

I
int commands:
 \int_compare:nNnTF

. 1533, 1611, 1617, 1848, 1849
 \int_decr:N 860
 \int_if_zero:nTF 432
 \int_if_zero_p:n 417, 418

 \int_incr:N 855
 \int_new:N 840
 \int_set:Nn 1131, 1772
 \int_use:N 1847, 1848, 1849
 \int_zero:N 1133, 1770
iow commands:
 \iow_close:N 1797
 \iow_newline: . . 424, 443, 450, 843, 849
 \iow_now:Nn 1796
 \iow_open:Nn 1795
 \g_tmpa_iow 1795, 1796, 1797
iptc␣(schema) 1380

J
\jobname 1588, 1597, 1784

K
kernel internal commands:
 \g__kernel_pdfmanagement_end_­

run_code_tl 394
keys commands:
 \keys_define:nn 459, 466, 673, 781, 799
 \l_keys_key_str 506
 \keys_set:nn 463, 778, 803

M
msg commands:
 \msg_error:nnn 699
 \msg_new:nnn . 7, 9, 10, 14, 822, 823, 824
 \msg_warning:nnn

. 39, 422, 441, 448, 582, 615
 \msg_warning:nnnn . . 1175, 1218, 1811
 \msg_warning:nnnnn 656, 664

P
pdf commands:
 \pdf_object_if_exist:nTF 531
 \pdf_object_new:n 533, 1789
 \pdf_object_ref:n 550, 1792
 \pdf_object_ref_last: 564
 \pdf_object_unnamed_write:nn . . . 563
 \pdf_object_write:nnn 534
 \pdf_string_from_unicode:nnN . . . 558
 \pdf_version:

. 4, 632, 643, 655, 657, 663, 665, 1505
 \pdf_version_compare:NnTF . . . 83, 91
 \pdf_version_gset:n 628, 636, 639, 645
pdf internal commands:
 __pdf_backend_metadata_stream:n

. 1791
 __pdf_backend_Names_gpush:nn . . 406
 __pdf_backend_omit_charset:n . . 133
 __pdf_backend_omit_cidset:n . . . 135
 __pdf_backend_omit_info:n 131

62

 __pdf_backend_set_regression_­
data: . 620

pdfaid~(schema) 1240
pdfannot commands:
 \pdfannot_dict_put:nnn

. 120, 121, 122, 123, 124
 \l_pdfannot_F_bitset 116,

117, 118, 119, 120, 121, 122, 123, 124
pdfdict commands:
 \pdfdict_if_empty:nTF 396
 \pdfdict_new:n 510
 \pdfdict_put:nnn

. 399, 400, 511, 547, 548, 559
 \pdfdict_use:n 563
pdffile commands:
 \g_pdffile_embed_nonpdfa_int 418, 432
 \g_pdffile_embed_pdfa_int 417
 \pdffile_embed_stream:nnN 401
pdfmanagement commands:
 \pdfmanagement_add:nnn

. 564, 625, 626, 1519, 1523, 1792
 \pdfmanagement_get_documentproperties:nNTF

. 1538, 1619
 \pdfmanagement_remove:nn . 1612, 1618
pdfmeta commands:
 \pdfmeta_set_regression_data: 6, 619
 \pdfmeta_standard_family:nn

. 2, 29, 652, 752, 762
 \pdfmeta_standard_get:nN . . 3, 46, 46
 \pdfmeta_standard_item:n

. 2, 42, 42, 590,
595, 601, 639, 645, 659, 667, 1530,
1532, 1533, 1534, 1535, 1611, 1617

 \pdfmeta_standard_use_family:nn . 29
 \pdfmeta_standard_verify:n . . . 2, 50
 \pdfmeta_standard_verify:nn . . . 3, 60
 \pdfmeta_standard_verify:nnN 3
 \pdfmeta_standard_verify:nnTF . .

. 2, 60, 631, 642, 654, 662
 \pdfmeta_standard_verify:nTF . . .

. 2, 50, 128,
130, 132, 134, 392, 414, 430, 569, 634

 \pdfmeta_standard_verify_p:n 50
 \pdfmeta_xmp_add:n . . . 10, 1801, 1801
 \pdfmeta_xmp_add_declaration:n .

. 10, 1816, 1816, 1821
 \pdfmeta_xmp_add_declaration:nnnnn

. . . . 10, 1822, 1822, 1844, 1853, 1860
 \pdfmeta_xmp_property_new:nnnnn

. 11, 1815, 1815
 \pdfmeta_xmp_schema_new:nnn

. 11, 1814, 1814
 \pdfmeta_xmp_xmlns_new:nn

. 10, 1808, 1808

pdfmeta internal commands:
 __pdfmeta_check_standard_­

pdfversion: 136, 648
 __pdfmeta_embed_colorprofile:n

. 529, 529, 575, 605
 __pdfmeta_force_standard_­

pdfversion:
. 629, 680, 687, 694, 752, 762

 \g__pdfmeta_outputintents_prop .
. 458, 472, 480,
488, 496, 505, 571, 589, 594, 600, 606

 \g__pdfmeta_standard_A_prop . . 25,
33, 36, 678, 679, 685, 686, 692, 693

 \g__pdfmeta_standard_pdf/A-1B_­
prop . 138

 \g__pdfmeta_standard_pdf/A-2A_­
prop . 138

 \g__pdfmeta_standard_pdf/A-2B_­
prop . 138

 \g__pdfmeta_standard_pdf/A-2U_­
prop . 138

 \g__pdfmeta_standard_pdf/A-3A_­
prop . 138

 \g__pdfmeta_standard_pdf/A-3B_­
prop . 138

 \g__pdfmeta_standard_pdf/A-3U_­
prop . 138

 \g__pdfmeta_standard_pdf/A-4_­
prop . 138

 \g__pdfmeta_standard_pdf/A-4F_­
prop . 138

 \g__pdfmeta_standard_pdf/UA-1_­
prop . 329

 \g__pdfmeta_standard_pdf/UA-2_­
prop . 329

 \g__pdfmeta_standard_pdf/X-4_­
prop . 349

 \g__pdfmeta_standard_pdf/X-4P_­
prop . 349

 \g__pdfmeta_standard_pdf/X-5G_­
prop . 349

 \g__pdfmeta_standard_pdf/X-5N_­
prop . 349

 \g__pdfmeta_standard_pdf/X-5PG_­
prop . 349

 \g__pdfmeta_standard_pdf/X-6_­
prop . 349

 \g__pdfmeta_standard_pdf/X-6N_­
prop . 349

 \g__pdfmeta_standard_pdf/X-6P_­
prop . 349

 \g__pdfmeta_standard_prop
. . . . 12, 25, 33, 34, 36, 44, 48, 52,
62, 70, 420, 434, 679, 686, 693, 756, 765

63

 \g__pdfmeta_standard_UA_prop . . .
. 25, 751, 761

 __pdfmeta_standard_verify_­
handler_annot_action_A:nn 102, 102

 __pdfmeta_standard_verify_­
handler_max_pdf_version:nn 88, 89

 __pdfmeta_standard_verify_­
handler_min_pdf_version:nn 80, 81

 __pdfmeta_standard_verify_­
handler_named_actions:nn . . 96, 96

 __pdfmeta_standard_verify_­
handler_outputintent_subtype:nn
. 108, 108

 \g__pdfmeta_standard_X_prop . . 25,
703, 709, 715, 721, 727, 733, 739, 745

 \l__pdfmeta_tmpa_seq
 19, 949, 950, 956, 957, 1517, 1518,
1521, 1522, 1525, 1526, 1635, 1637

 \g__pdfmeta_tmpa_str
. 22, 932, 933, 934, 935, 936, 938

 \l__pdfmeta_tmpa_str
. 19, 558, 560, 1001, 1002,
1011, 1012, 1021, 1022, 1584, 1585,
1589, 1592, 1593, 1594, 1598, 1601

 \l__pdfmeta_tmpa_tl
. 19, 405, 406, 420, 425,
434, 436, 451, 556, 558, 931, 932,
1031, 1034, 1036, 1065, 1066, 1071,
1076, 1077, 1080, 1203, 1517, 1519,
1521, 1523, 1525, 1538, 1541, 1543,
1619, 1621, 1635, 1716, 1719, 1723,
1726, 1755, 1758, 1826, 1837, 1841

 \l__pdfmeta_tmpb_seq 19
 \l__pdfmeta_tmpb_tl

. 19, 602, 603, 605, 610,
615, 1065, 1069, 1071, 1076, 1080,
1716, 1720, 1723, 1727, 1835, 1837

 __pdfmeta_verify_pdfa_annot_­
flags: 114, 129

 __pdfmeta_write_outputintent:nn
. 529, 544, 577, 609

 __pdfmeta_xmp_add_packet_­
chunk:n . 962, 962, 969, 980, 987,
994, 1002, 1022, 1099, 1132, 1134, 1805

 __pdfmeta_xmp_add_packet_­
chunk:nN 970, 970, 977, 1012

 __pdfmeta_xmp_add_packet_­
close:nn 991,
991, 1051, 1052, 1083, 1084, 1112,
1113, 1128, 1129, 1130, 1190, 1191,
1193, 1213, 1228, 1419, 1420, 1421,
1422, 1423, 1475, 1476, 1477, 1491,
1492, 1493, 1494, 1495, 1557,
1558, 1570, 1571, 1573, 1705, 1833

 __pdfmeta_xmp_add_packet_­
field:nnn 1221, 1221, 1403, 1405,
1407, 1409, 1411, 1413, 1415, 1417,
1467, 1469, 1471, 1473, 1487, 1489

 __pdfmeta_xmp_add_packet_­
line:nnn 996,
996, 1005, 1036, 1048, 1184, 1185,
1186, 1209, 1210, 1211, 1212, 1225,
1226, 1227, 1395, 1396, 1398, 1399,
1459, 1460, 1462, 1463, 1479, 1480,
1482, 1483, 1505, 1518, 1522, 1526,
1530, 1531, 1534, 1535, 1536, 1540,
1542, 1564, 1577, 1579, 1591, 1600,
1602, 1604, 1633, 1638, 1648, 1652,
1711, 1728, 1731, 1734, 1737, 1740,
1743, 1746, 1749, 1752, 1756,
1762, 1764, 1829, 1830, 1831, 1832

 __pdfmeta_xmp_add_packet_­
line:nnnN 1006, 1006, 1015, 1668,
1672, 1676, 1680, 1684, 1688, 1692

 __pdfmeta_xmp_add_packet_line_­
attr:nnnn 1016, 1016,
1025, 1068, 1070, 1079, 1717, 1724

 __pdfmeta_xmp_add_packet_line_­
default:nnnn 1026,
1026, 1038, 1501, 1509, 1513, 1639

 __pdfmeta_xmp_add_packet_­
list:nnnn
. 1056, 1087, 1613, 1628, 1643

 __pdfmeta_xmp_add_packet_list_­
simple:nnnn . 1039, 1055, 1609,
1615, 1621, 1624, 1626, 1631, 1636

 __pdfmeta_xmp_add_packet_­
open:nn 978, 978, 983, 1044,
1045, 1061, 1062, 1101, 1102, 1106,
1107, 1187, 1188, 1208, 1392, 1393,
1401, 1402, 1456, 1457, 1465, 1466,
1485, 1486, 1551, 1552, 1567, 1568

 __pdfmeta_xmp_add_packet_open_­
attr:nnn
. . 984, 984, 990, 1104, 1183, 1224,
1394, 1458, 1478, 1563, 1702, 1828

 __pdfmeta_xmp_add_pdfxid: . 705,
711, 717, 723, 729, 735, 741, 747, 1272

 \g__pdfmeta_xmp_bool
. 621, 773, 774, 1777

 __pdfmeta_xmp_build_dc:
. 1119, 1607, 1607

 __pdfmeta_xmp_build_iptc:
. 1124, 1698, 1698

 __pdfmeta_xmp_build_iptc_data:N
. 1094, 1664, 1664

 __pdfmeta_xmp_build_packet: . . .
. 1088, 1088, 1788

64

 __pdfmeta_xmp_build_pdf:
. 1115, 1499, 1499

 __pdfmeta_xmp_build_pdfd:
. 1118, 1547, 1547

 __pdfmeta_xmp_build_pdfd_­
claim:nn 1555, 1561, 1561

 __pdfmeta_xmp_build_photoshop:
. 1120, 1575, 1575

 __pdfmeta_xmp_build_prism:
. 1123, 1709, 1709

 __pdfmeta_xmp_build_standards:
. 1117, 1528, 1528

 __pdfmeta_xmp_build_tdm:
. 1125, 1760, 1760

 __pdfmeta_xmp_build_user:
. 1126, 1768, 1768

 __pdfmeta_xmp_build_xmp:
. 1121, 1507, 1507

 __pdfmeta_xmp_build_xmpMM:
. 1122, 1582, 1582

 __pdfmeta_xmp_build_xmpRights:
. 1116, 1646, 1646

 __pdfmeta_xmp_create_uuid:nN . .
. 913, 913, 1587, 1596

 \l__pdfmeta_xmp_currentdate_seq
. 898, 906, 1786

 \l__pdfmeta_xmp_currentdate_tl .
. . . . 898, 907, 1597, 1781, 1784, 1786

 __pdfmeta_xmp_date_get:nNN
. . . . 900, 900, 1516, 1520, 1524, 1635

 \l__pdfmeta_xmp_date_regex 862, 867
 __pdfmeta_xmp_date_split:nN . . .

. 865, 865, 869, 910, 1786
 __pdfmeta_xmp_decr_indent:

. 841, 858, 993, 1696
 \l__pdfmeta_xmp_doclang_tl

. 942, 1090, 1093, 1632
 \g__pdfmeta_xmp_export_bool

. 796, 808, 813, 817, 1793
 \g__pdfmeta_xmp_export_str

. 797, 809, 818, 1795
 __pdfmeta_xmp_generate_bom: . . .

. 825, 829, 833, 1100
 __pdfmeta_xmp_incr_indent:

. 841, 853, 981, 988, 1667
 __pdfmeta_xmp_indent:

. 841, 841, 966, 974
 __pdfmeta_xmp_indent:n 841, 847, 1143
 \l__pdfmeta_xmp_indent_int . 840,

844, 855, 860, 1131, 1133, 1770, 1772
 \l__pdfmeta_xmp_iptc_data_tl . . .

. 1094, 1095, 1663, 1700, 1704
 __pdfmeta_xmp_iso_today:

. 1845, 1856, 1863

 __pdfmeta_xmp_lang_get:nNN
. . . . 946, 960, 1065, 1076, 1714, 1721

 \l__pdfmeta_xmp_lang_regex 944, 949
 \l__pdfmeta_xmp_metalang_tl

 942, 952, 1066, 1077, 1091, 1092, 1093
 \g__pdfmeta_xmp_packet_tl

. 961, 964, 1704, 1791, 1796
 \g__pdfmeta_xmp_pdfd_data_prop .

. . 1546, 1549, 1553, 1819, 1835, 1839
 __pdfmeta_xmp_print_date:N

. . . . 870, 870, 1518, 1522, 1526, 1637
 __pdfmeta_xmp_property_new:nnnnn

. 1197, 1198, 1234, 1244,
1250, 1260, 1266, 1279, 1290, 1296,
1302, 1308, 1314, 1320, 1326, 1332,
1338, 1344, 1350, 1356, 1362, 1368,
1374, 1384, 1429, 1435, 1448, 1815

 __pdfmeta_xmp_sanitize:nN
. 925, 925, 941, 1001, 1011, 1021

 __pdfmeta_xmp_schema_enable_­
pdfd: 1441, 1497, 1818, 1825

 __pdfmeta_xmp_schema_new:nnn . .
. . . . 1170, 1170, 1230, 1240, 1256,
1275, 1286, 1380, 1425, 1444, 1814

 \g__pdfmeta_xmp_schema_property_­
prop 1197, 1203, 1205

 \l__pdfmeta_xmp_schema_seq
. 1097, 1108, 1169, 1178

 \g__pdfmeta_xmp_user_packet_str 1767
 \g__pdfmeta_xmp_user_packet_tl .

. 1767, 1771, 1803
 __pdfmeta_xmp_wtpdf_accessibility_­

declaration:
. 768, 790, 793, 1845, 1858

 __pdfmeta_xmp_wtpdf_reuse_­
declaration:
. 769, 784, 787, 1845, 1851

 __pdfmeta_xmp_xmlns_new:nn
. 1138, 1138, 1146,
1147, 1148, 1149, 1150, 1151, 1152,
1154, 1155, 1156, 1157, 1158, 1159,
1160, 1161, 1162, 1163, 1164, 1165,
1166, 1167, 1168, 1274, 1443, 1812

 \g__pdfmeta_xmp_xmlns_prop
. 1136, 1140, 1810

 \g__pdfmeta_xmp_xmlns_tl
. 1105, 1136, 1141

pdfmetatmpa internal commands:
 \g__pdfmetatmpa_str 19
pdfuaid~(schema) 1256
PDFversion . 1499
pdfxid~(schema) 1272

65

photoshop commands:
 photoshop:AuthorsPosition/pdfauthortitle

. 1607
 photoshop:CaptionWriter/pdfcaptionwriter

. 1607
\PreviousTotalPages 1758
prg commands:
 \prg_do_nothing: 787, 793, 1497
 \prg_new_conditional:Npnn 50
 \prg_new_protected_conditional:Npnn

. 60
 \prg_replicate:nn 844, 850, 1132
 \prg_return_false:

. 54, 73, 85, 93, 100, 106, 112
 \prg_return_true:

. 57, 77, 86, 94, 99, 105, 111
prism commands:
 prism:subtitle/pdfsubtitle . . . 1709
prism~(schema) 1286
Producer/pdfproducer 1499
prop commands:
 \prop_const_from_keyval:Nn 513, 520
 \prop_get:NnN 48, 599
 \prop_get:NnNTF

. 420, 434, 553, 1203, 1835
 \prop_gput:Nnn

. 204, 206, 208, 214, 218, 220, 232,
234, 236, 244, 246, 248, 257, 259,
261, 272, 274, 276, 284, 286, 288,
296, 298, 300, 302, 304, 306, 308,
321, 324, 472, 480, 488, 496, 505,
593, 756, 765, 1140, 1205, 1819, 1839

 \prop_gremove:Nn
. . . . 211, 223, 264, 310, 312, 314, 327

 \prop_gset_eq:NN
. 33, 34, 36, 201, 229, 241,
254, 269, 281, 293, 318, 438, 678,
679, 685, 686, 692, 693, 703, 709,
715, 721, 727, 733, 739, 745, 751, 761

 \prop_gset_from_keyval:Nn
. 139, 331, 341,
358, 362, 366, 370, 374, 378, 382, 386

 \prop_if_empty:NTF 1549
 \prop_if_exist:NTF 31, 573, 603
 \prop_if_in:NnTF . . . 52, 62, 588, 1810
 \prop_item:Nn 44, 70, 537
 \prop_map_inline:Nn . . . 571, 606, 1553
 \prop_new:N 25, 26, 27, 28, 138, 200,

228, 240, 253, 268, 280, 292, 317,
329, 330, 349, 350, 351, 352, 353,
354, 355, 356, 458, 1137, 1197, 1546

\ProvidesExplPackage 3

R
regex commands:
 \regex_extract_once:NnN 949
 \regex_new:N 862, 944
 \regex_set:Nn 863, 945
 \regex_split:NnN 867

S
seq commands:
 \seq_if_empty:NTF 950
 \seq_item:Nn 872, 874,

876, 878, 880, 881, 883, 884, 886,
887, 888, 889, 891, 892, 895, 956, 957

 \seq_map_inline:Nn 1108
 \seq_new:N 23, 24, 899, 1169
 \seq_put_right:Nn 1178
 \seq_remove_all:Nn 1097
 \seq_set_eq:NN 906
str commands:
 \c_hash_str . . 10, 1103, 1153, 1161,

1164, 1165, 1166, 1167, 1854, 1861
 \str_case:nn 1656
 \str_convert_pdfname:n 547
 \str_greplace_all:Nnn

. 933, 934, 935, 936
 \str_gset:Nn 818, 932
 \str_gset_eq:NN 809
 \str_if_empty:NTF 1585, 1594
 \str_if_eq:nnTF 436
 \str_if_exist:NTF 1779
 \str_lowercase:n 915
 \str_new:N 21, 22, 797, 1136
 \str_range:Nnn . 918, 919, 920, 921, 922
 \str_set:Nn 915, 916, 1584, 1593
 \str_set_eq:NN 938
 \c_tilde_str 930
sys commands:
 \c_sys_day_int 1849
 \c_sys_engine_exec_str 625, 1503
 \c_sys_engine_version_str . 625, 1503
 \sys_if_engine_luatex_p: 826
 \sys_if_engine_xetex_p: 827
 \c_sys_jobname_str 809, 1641
 \c_sys_month_int 1848
 \c_sys_timestamp_str . . . 6, 1779, 1781
 \c_sys_year_int 1847

T
tdmrep␣(schema) 1425
tex commands:
 \tex_mdfivesum:D 915
text commands:
 \text_declare_purify_equivalent:Nn

. 929, 930

66

 \text_purify:n 931
\texttilde . 930
tl commands:
 \c_space_tl 536, 844, 850
 \tl_clear:N 1666
 \tl_concat:NNN 1837
 \tl_gput_right:Nn

 394, 964, 1141, 1181, 1206, 1704, 1803
 \tl_if_blank:nTF . . . 470, 478, 486,

494, 502, 872, 879, 882, 885, 890,
904, 999, 1009, 1019, 1029, 1092, 1758

 \tl_if_empty:NTF 1095, 1700
 \tl_if_empty:nTF 1565
 \tl_if_eq:nnTF 110, 1066, 1077
 \tl_if_exist:NTF 1173, 1201

 \tl_if_in:nnTF 98, 104
 \tl_new:N 19, 20, 898,

942, 943, 961, 1179, 1180, 1663, 1767
 \tl_put_right:Nn 972
 \tl_set:Nn 903, 931, 952, 953, 956,

957, 1031, 1034, 1090, 1091, 1755, 1826
 \tl_set_eq:NN 907, 1781
 \tl_to_str:N 929, 932
 \tl_use:N 1110, 1189

U
use commands:
 \use:N . 67
 \use_i:nn 1541
 \use_ii:nn 1543

67

	1 l3pdfmeta documentation
	1.1 Standard families
	1.2 Verifying requirements of PDF standards
	1.2.1 Simple tests without handler
	1.2.2 Tests with values and special handlers

	1.3 Colorprofiles and OutputIntent
	1.4 Regression tests

	2 XMP-metadata
	2.1 Debug option
	2.2 Encoding and escaping
	2.3 User interfaces and differences to hyperxmp
	2.3.1 PDF standards
	2.3.2 Declarations
	2.3.3 Dates

	2.4 Language
	2.5 Rights
	2.6 PDF related data
	2.7 Document data
	2.8 User commands

	3 l3pdfmeta implementation
	3.1 Standards (work in progress)
	3.1.1 Tools and tests
	3.1.2 Functions to check a requirement
	3.1.3 Enforcing requirements
	3.1.4 pdf/A
	3.1.5 pdf/UA
	3.1.6 pdf/X
	3.1.7 Embedded Files
	3.1.8 Colorprofiles and Outputintents

	3.2 Regression test

	4 XMP-Metadata implementation
	4.1 New document keys
	4.2 Messages
	4.3 Some helper commands
	4.3.1 Generate a BOM
	4.3.2 Indentation
	4.3.3 Date and time handling
	4.3.4 UUID
	4.3.5 Purifying and escaping of strings

	4.4 Language handling
	4.5 Filling the packet
	4.5.1 Helper commands to add lines and lists
	4.5.2 Building the main packet

	4.6 Building the chunks: rdf namespaces
	4.7 Building the chunks: Extensions
	4.7.1 The extension data

	4.8 The actual user / document data
	4.8.1 pdf
	4.8.2 xmp
	4.8.3 Standards

	4.9 Declarations
	4.10 Photoshop
	4.11 XMP Media Management
	4.12 Rest of dublin Core data
	4.13 xmpRights
	4.14 IPTC
	4.15 Prism
	4.16 TDM
	4.17 User additions
	4.18 Activating the metadata
	4.19 User commands
	4.20 Default declarations

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	M
	P
	R
	S
	T
	U

